Geostatistik
 Variogramme und Kriging

Prof. van den Boogaart

boogaart@math.tu-freiberg.de

Gliederung

(1) Zufallsfelder

- Regionalisierte Variablen
- Abhängigkeit
- Stationarität
- Variogramm
(2) Variographie
- Empirisches Variogramm
- Nugget, Sill und Range
- Variogrammodelle
(3) Gewöhnliches Kriging
- Kriging Aufgabe
- Kriging Gleichungssystem
- Kriging Vorhersage

Zufallsfelder Variographie Gewöhnliches Kriging Fortgeschrittene Lineare Geostatistik Nichtlineare Geostatistik

Gliederung

(1) Zufallsfelder

- Regionalisierte Variablen
- Abhängigkeit
- Stationarität
- Variogramm
(2) Variographie
- Empirisches Variogramm
- Nugget, Sill und Range
- Variogrammodelle
(3) Gewöhnliches Kriging
- Kriging Aufgabe
- Kriging Gleichungssystem
- Kriging Vorhersage

Zufallsfelder
Variographie
Gewöhnliches Kriging
Fortgeschrittene Lineare Geostatistik
Nichtlineare Geostatistik

Regionalisierte Variablen

$Z(s)=$ Messwert an Stelle s

$$
s \in R^{2}, \quad \text { Ort }
$$

Eine regionalisierte Variable (Zufallsfeld) hat überall einen Wert.
Toblers erstes Gesetz der Geographie: Alles ist abhängig. Nahes ist stärker abhängig.

Zufallsfelder
Variographie
Gewöhnliches Kriging
Fortgeschrittene Lineare Geostatistik
Nichtlineare Geostatistik

Geostatistische Daten

\mathbf{x}	\mathbf{y}	$Z\left(\binom{x}{y}\right)$
x_{1}	y_{1}	z_{1}
x_{2}	y_{2}	z_{2}
\vdots	\vdots	\vdots
Messorte:		

$$
s_{i}, i=1, \ldots, n
$$

Beobachtungen / Messwerte

$$
z_{i}=Z\left(s_{i}\right)
$$

Zufallsfelder Variographie Gewöhnliches Kriging Fortgeschrittene Lineare Geostatistik Nichtlineare Geostatistik

Regionalisierte Variablen
Abhängigkeit
Stationarität
Variogramm

h-Scatterplot

cor $=0.847013453748368$

Zufallsfelder Variographie Gewöhnliches Kriging Fortgeschrittene Lineare Geostatistik Nichtlineare Geostatistik

Regionalisierte Variablen
Abhängigkeit
Stationarität
Variogramm

h-Scatterplot

\mathbf{X}	\mathbf{Y}
$Z\left(s_{1}\right)$	$Z\left(s_{1}\right)$
$Z\left(s_{2}\right)$	$Z\left(s_{1}\right)$
\vdots	\vdots
$Z\left(s_{1}\right)$	$Z\left(s_{2}\right)$
\vdots	\vdots

mit $\left\|s_{1}-s_{2}\right\| \approx h=55000$
Kovarianzfunktion:

$c\left(s_{1}, s_{2}\right)=\operatorname{cov}\left(Z\left(s_{1}\right), Z\left(s_{2}\right)\right)$

Stationarität

- Starke Stationarität Verteilung bleibt unter Verschiebung gleich.
- Schwache Stationarität

Erwartungswert, Varianz und Kovarianz bleibt unter Verschiebung gleich.

- Intrisische Stationarität

Differenzen haben Erwartungswert 0 und behalten unter Verschiebung ihre Varianz.

Variogram

Variogram

$$
2 \gamma\left(s_{1}, s_{2}\right):=E\left[\left(Z\left(s_{1}\right)-Z\left(s_{2}\right)\right)^{2}\right]
$$

Semivariogram:

$$
\gamma\left(s_{1}, s_{2}\right):=\frac{1}{2} E\left[\left(Z\left(s_{1}\right)-Z\left(s_{2}\right)\right)^{2}\right]
$$

Stationäres Variogram

$$
\gamma_{s}\left(s_{1}-s_{2}\right)=\gamma\left(s_{1}, s_{2}\right)
$$

Isotropes Variogram

$$
\gamma_{I}\left(\left\|s_{1}-s_{2}\right\|\right)=\gamma\left(s_{1}, s_{2}\right)
$$

Zufallsfelder Variographie Gewöhnliches Kriging
Fortgeschrittene Lineare Geostatistik Nichtlineare Geostatistik

Empirisches Variogramm
Nugget, Sill und Range
Variogrammodelle

Gliederung

(1) Zufallsfelder

- Regionalisierte Variablen
- Abhängigkeit
- Stationarität
- Variogramm
(2) Variographie
- Empirisches Variogramm
- Nugget, Sill und Range
- Variogrammodelle
(3) Gewöhnliches Kriging
- Kriging Aufgabe
- Kriging Gleichungssystem
- Kriging Vorhersage

Zufallsfelder
Variographie
Gewöhnliches Kriging
Fortgeschrittene Lineare Geostatistik
Nichtlineare Geostatistik

Empirisches Variogramm
Nugget, Sill und Range
Variogrammodelle

Variogram Wolke

Semivariogramwolke

Empirisches Variogramm erklärt

(Semi-)Variogrammwolke

Rohes Empirisches Variogramm

Zufallsfelder
Variographie
Gewöhnliches Kriging
Fortgeschrittene Lineare Geostatistik
Nichtlineare Geostatistik

Empirisches Variogramm Nugget, Sill und Range Variogrammodelle

Empirisches Variogramm

Semivariogramm

Verlässlichkeit des Empirische Variogram

Histogram of wolke\$h

Zufallsfelder
Variographie
Gewöhnliches Kriging
Fortgeschrittene Lineare Geostatistik
Nichtlineare Geostatistik

Empirisches Variogramm
Nugget, Sill und Range
Variogrammodelle

Nugget, Sill und Range

Semivariogramm

Variogrammodelle

spherical variogram

h
exponential variogran
\succ

h

Gaussian variogram
power variogram

h

h

Sphärisches Variogram

spherical variogram

$\gamma(h)=n+(s-n) * \gamma_{s p h}(h / r)$

Exponentiells Variogram

exponential variogram
$\gamma(h)=n+(s-n) * \gamma_{\exp }(h / r)$

Gausssches Variogram

Gaussian variogram

$$
\begin{aligned}
& \gamma(h)=n+(s-n) * \gamma_{g a u}(h / r) \\
& \gamma_{\text {gau }}(h)=\left\{\begin{array}{l}
0, \\
1-\exp \left\{-h^{2}\right\}, \\
1,
\end{array}\right.
\end{aligned}
$$

Zufallsfelder
Variographie
Gewöhnliches Kriging
Fortgeschrittene Lineare Geostatistik
Nichtlineare Geostatistik

Empirisches Variogramm Nugget, Sill und Range Variogrammodelle

Power Variogram

$$
\begin{gathered}
\gamma(h)=n+(s-n) \gamma_{\text {pow }}(h) \\
\gamma_{\text {pow }}(h)= \begin{cases}0, & h=0 \\
\|h\|^{\lambda}, & h>0\end{cases} \\
0 \leq \lambda \leq 2
\end{gathered}
$$

Variogrammodelle anpassen

Methode der kl. Quadrate

$$
\underset{\theta}{\operatorname{argmin}} \sum_{j=1}^{N}\left(\gamma_{\theta}(h)-\hat{\gamma}\left(h_{j}\right)\right)^{2}
$$

ML/REML (Restricted Maximum Likelihood)

$$
\underset{\theta}{\operatorname{argmax}} L\left(z_{1}, \ldots, z_{n} ; \theta\right)
$$

$L(\ldots)=$ Wahrscheinlichkeitsdichte der Abweichungen vom Modell
spherical variogram

Gliederung

(1) Zufallsfelder

- Regionalisierte Variablen
- Abhängigkeit
- Stationarität
- Variogramm
(2) Variographie
- Empirisches Variogramm
- Nugget, Sill und Range
- Variogrammodelle
(3) Gewöhnliches Kriging
- Kriging Aufgabe
- Kriging Gleichungssystem
- Kriging Vorhersage

Kriging Aufgabe

Gemessen wurden die Werte z_{1}, \ldots, z_{n} eines geostatistischen Feldes an n Punkten x_{1}, \ldots, x_{n}. Frage wie kann man den Wert an einem weiteren Punkt x_{n+1} möglichst gut vorhersagen?

Kriging Aufgabe

Gemessen wurden die Werte z_{1}, \ldots, z_{n} eines geostatistischen Feldes an n Punkten x_{1}, \ldots, x_{n}. Frage wie kann man den Wert an einem weiteren Punkt x_{n+1} möglichst gut vorhersagen?

Kriging Gleichungssystem

Ideen:
linear(, weil einfach):

$$
\hat{Z}(s)=\sum_{i=1}^{n} w_{i}(s) Z\left(s_{i}\right)
$$

Unverzerrtheitsbedingung (im Mittel treffen):

$$
E[\hat{Z}(s)-Z(s)]=0
$$

Fehler so klein wie möglich:

$$
\operatorname{var}(\hat{Z}(s)-Z(s)) \rightarrow \min
$$

Kriging Gleichungssystem

Bezeichungen:

$$
\begin{gathered}
\mathbf{z}=\left(\begin{array}{c}
Z\left(s_{1}\right) \\
\vdots \\
Z\left(s_{n}\right)
\end{array}\right), \quad \gamma=\left(\begin{array}{c}
\gamma\left(s_{1}, s\right) \\
\vdots \\
\gamma\left(s_{n}, s\right)
\end{array}\right), \quad \mathbf{w}=\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right) \\
\mathbf{1}=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right), \quad \vartheta=\left(\begin{array}{ccc}
\gamma\left(s_{1}, s_{1}\right) & \cdots & \gamma\left(s_{1}, s_{n}\right) \\
\vdots & \ddots & \vdots \\
\gamma\left(s_{n}, s_{1}\right) & \cdots & \gamma\left(s_{n}, s_{n}\right)
\end{array}\right)
\end{gathered}
$$

Gleichungssystem Ausgangspunkt

Unverzerrtheitsbedingung (im Mittel treffen):

$$
E[\hat{Z}(s)-Z(s)]=\mathbf{1}^{t} \mathbf{w}=0
$$

Fehler so klein wie m"glich:

$$
\operatorname{var}(\hat{Z}(s)-Z(s))=\mathbf{w}^{t} \Gamma \mathbf{w} \rightarrow \min
$$

Kriging Gleichungssystem

$$
\begin{aligned}
& \binom{\gamma}{1}=\left(\begin{array}{cc}
\Gamma & 1 \\
1^{t} & 0
\end{array}\right)\binom{\mathbf{w}}{l} \\
& \binom{\mathbf{w}}{l}=\left(\begin{array}{ll}
\Gamma & 1 \\
1^{t} & 0
\end{array}\right)^{-1}\binom{\gamma}{1}
\end{aligned}
$$

Kriging Vorhersage

$$
\begin{gathered}
\hat{Z}(s)=\left(\begin{array}{cc}
\Gamma & 1 \\
1^{t} & 0
\end{array}\right)^{-1}\binom{\gamma}{1}\binom{\mathbf{z}}{0} \\
\operatorname{var}(\hat{Z}(s)-Z())=\sigma_{K}^{2}(s) \\
\operatorname{var}(\hat{Z}(s)-Z()) \approx \operatorname{var}(Z(s))-\operatorname{var}()
\end{gathered}
$$

Gewöhnliches Kriging
Fortgeschrittene Lineare Geostatistik Nichtlineare Geostatistik

Kriging Fehler
Kriging Gain
Vorhersageintervall
Kriging Eigenschaften
Kreuzvalidation

Kriging Karte

X

Kriging Fehler

X

Kriging Gain

X
Gewinn durch Kriging in \% der Varianz

Vorhersageintervall

Krigingergebniss

X

Krigingfehler

X

Kriging Eigenschaften

- Kriging interpoliert (aber nicht unbedingt stetig am Messpunkt)
- Kriging ist das beste lineare erwartungstreue Verfahren,
- wenn das Variogram und die Voraussetzungen (Stationarität) stimmen.
- Aber das Beste ist nicht unbedingt gut.
- Linear und Erwartungstreu sind Bug und Feature zugleich
- Kennt seine eigene Genauigkeit (Besser wissen das man etwas nicht weiss als irren)

Validation

- Einfache Validation: Bisher unbeobachtete Punkte Vorhersagen und prüfen
- Kreuvalidation: Jeden Punkt einmal weglassen und vorhersagen.

X

Kriging Schritt für Schritt

$<-+>$ Probenplan erstellen (Versuchsplanung später)Räumliche Daten erheben (Koordinaten und Werte)Datenexploration / Voraussetzungen untersuchenVariographieKriging durchführenKriging FehlerkarteKreuzvalidationSchlüsse ziehen

Gliederung

(1) Zufallsfelder

- Regionalisierte Variablen
- Abhängigkeit
- Stationarität
- Variogramm
(2) Variographie
- Empirisches Variogramm
- Nugget, Sill und Range
- Variogrammodelle
(3) Gewöhnliches Kriging
- Kriging Aufgabe
- Kriging Gleichungssystem
- Kriging Vorhersage

Universelle Kriging

Herausforderung: Was tun wenn ein Trend vorliegt und das Zufallsfeld daher nicht stationär ist.

Lokales Kriging

Herausforderung: Was tun, wenn man man zu viele Daten hat oder die Mittelwerte sich lokal verändern.

Indikator Kriging

Herausforderung: Was tun, wenn man die Verteilung braucht und nicht nur den Mittelwert.

Duales Kriging

Herausforderung: Was tun, wenn man sehr viele Punkte interpolieren muss und der Computer nicht hinterherkommt.

Lognormal Kriging

Herausforderung: Was tun, wenn man ein positives Zufallsfeld schiefe Verteilungen hat.

Transgaussches Kriging

Herausforderung: Was tun, wenn weder normal noch log-normal stimmen.

Disjunktives Kriging

Herausforderung: Was tun, wenn linear so gar nicht optimal ist, weildie Verteilung so gar nicht normal ist.

Einfaches Kriging

Herausforderung: Was tun, wenn der Trend bekannt ist.

Block Kriging

Herausforderung: Was tun, wenn man den
Mittelwert/Gesamtmenge in einem Gebiet braucht.

Kriging linearer Funktionale

Herausforderung: Was tun, wenn man statt der Höhe das Gefälle braucht.

Gliederung

(1) Zufallsfelder

- Regionalisierte Variablen
- Abhängigkeit
- Stationarität
- Variogramm
(2) Variographie
- Empirisches Variogramm
- Nugget, Sill und Range
- Variogrammodelle
(3) Gewöhnliches Kriging
- Kriging Aufgabe
- Kriging Gleichungssystem
- Kriging Vorhersage

