Geostatistik

Variogramme und Kriging

Prof. van den Boogaart

boogaart@math.tu-freiberg.de

Gliederung

- Zufallsfelder
 - Regionalisierte Variablen
 - Abhängigkeit
 - Stationarität
 - Variogramm
- 2 Variographie
 - Empirisches Variogramm
 - Nugget, Sill und Range
 - Variogrammodelle
- Gewöhnliches Kriging
 - Kriging Aufgabe
 - Kriging Gleichungssystem
 - Kriging Vorhersage

Gliederung

- Zufallsfelder
 - Regionalisierte Variablen
 - Abhängigkeit
 - Stationarität
 - Variogramm
- 2 Variographie
 - Empirisches Variogramm
 - Nugget, Sill und Range
 - Variogrammodelle
- Gewöhnliches Kriging
 - Kriging Aufgabe
 - Kriging Gleichungssystem
 - Kriging Vorhersage

Regionalisierte Variablen

Z(s) = Messwert an Stelle s $s \in R^2$. Ort

Eine regionalisierte Variable (Zufallsfeld) hat überall einen Wert

Toblers erstes Gesetz der Geographie: Alles ist abhängig. Nahes ist stärker abhängig.

Nichtlineare Geostatistik

Geostatistische Daten

x	у	$Z\left(\left(\begin{array}{c}x\\y\end{array}\right)\right)$
-X ₁	<i>y</i> ₁	<i>z</i> ₁
<i>x</i> ₁ <i>x</i> ₂	<i>y</i> ₁ <i>y</i> ₂	z_2
:	:	:
Messorte.		

$$s_i$$
, $i = 1, \ldots, n$

Beobachtungen / Messwerte

$$z_i = Z(s_i)$$

h-Scatterplot

$$\begin{array}{c|cccc} \mathbf{X} & \mathbf{Y} \\ \hline Z(s_1) & Z(s_1) \\ Z(s_2) & Z(s_1) \\ \vdots & \vdots \\ Z(s_1) & Z(s_2) \\ \vdots & \vdots \\ \text{mit } \|s_1 - s_2\| \approx h = 5000 \end{array}$$

cor= 0.847013453748368

h-Scatterplot

$$\begin{array}{c|c} \mathbf{X} & \mathbf{Y} \\ \hline Z(s_1) & Z(s_1) \\ Z(s_2) & Z(s_1) \\ \vdots & \vdots \\ Z(s_1) & Z(s_2) \\ \vdots & \vdots \\ \text{mit } \|s_1 - s_2\| \approx h = 55000 \\ \text{Kovarianz funktion:} \end{array}$$

$$c(s_1,s_2)=cov(Z(s_1),Z(s_2))$$

cor= -0.00623385931223832

Stationarität

- Starke Stationarität
 Verteilung bleibt unter Verschiebung gleich.
- Schwache Stationarität
 Erwartungswert, Varianz und Kovarianz bleibt unter Verschiebung gleich.
- Intrisische Stationarität
 Differenzen haben Erwartungswert 0 und behalten unter
 Verschiebung ihre Varianz.

Variogram

Variogram

$$2\gamma(s_1,s_2) := E\left[(Z(s_1) - Z(s_2))^2 \right]$$

Semivariogram:

$$\gamma(s_1, s_2) := \frac{1}{2} E\left[(Z(s_1) - Z(s_2))^2 \right]$$

Stationäres Variogram

$$\gamma_s(s_1-s_2)=\gamma(s_1,s_2)$$

Isotropes Variogram

$$\gamma_I(\|s_1-s_2\|)=\gamma(s_1,s_2)$$

Gliederung

- Zufallsfelder
 - Regionalisierte Variablen
 - Abhängigkeit
 - Stationarität
 - Variogramm
- 2 Variographie
 - Empirisches Variogramm
 - Nugget, Sill und Range
 - Variogrammodelle
- Gewöhnliches Kriging
 - Kriging Aufgabe
 - Kriging Gleichungssystem
 - Kriging Vorhersage

Variogram Wolke

Semivariogramwolke

Empirisches Variogramm erklärt

(Semi-)Variogrammwolke

Rohes Empirisches Variogramm

Semivariogramm

Empirisches Variogramm

Semivariogramm

Verlässlichkeit des Empirische Variogram

Histogram of wolke\$h

Nugget, Sill und Range

Semivariogramm

Variogrammodelle

Sphärisches Variogram

spherical variogram

$$\gamma(h) = n + (s - n) * \gamma_{sph}(h/r)$$

$$\gamma_{sph}(h) = \begin{cases} 0, & h = 0 \\ \frac{3}{2}h - \frac{1}{2}h^3, & 0 \le h \le \frac{9}{8} \\ 1, & h \ge 1 \end{cases}$$

Exponentiells Variogram

exponential variogram

$$\gamma(h) = n + (s - n) * \gamma_{exp}(h/r)$$

$$\gamma_{exp}(h) = \begin{cases} 0, & h = 0 \\ 1 - \exp\{-h\}, & 0 \le h \le 1 \\ 1, & h \ge 1 \end{cases}$$

Gausssches Variogram

Gaussian variogram

$$\gamma(h) = n + (s - n) * \gamma_{gau}(h/r)$$

$$\gamma_{gau}(h) = \begin{cases} 0, & h = 0 \\ 1 - \exp\{-h^2\}, & 0 \le 9 \\ 1, & h \ge 1 \end{cases}$$

Power Variogram

$$\gamma(h) = n + (s - n)\gamma_{pow}(h)$$

$$\gamma_{pow}(h) = \begin{cases} 0, & h = 0 \\ ||h||^{\lambda}, & h > 0 \end{cases}$$

$$0 \le \lambda \le 2$$

power variogram

Variogrammodelle anpassen

Methode der kl. Quadrate

$$\underset{\theta}{\operatorname{argmin}} \sum_{j=1}^{N} (\gamma_{\theta}(h) - \hat{\gamma}(h_{j}))^{2}$$

ML/REML (Restricted Maximum Likelihood)

$$\operatorname*{argmax}_{\theta} L(z_1,\ldots,z_n;\theta)$$

L(...) = Wahrscheinlichkeitsdichte der Abweichungen vom Modell

spherical variogram

Kriging Aufgabe
Kriging Gleichungssystem
Kriging Vorhersage
Kriging Karte
Kriging Fehler
Kriging Gain
Vorhersageintervall
Kriging Eigenschaften

Gliederung

- Zufallsfelder
 - Regionalisierte Variablen
 - Abhängigkeit
 - Stationarität
 - Variogramm
- 2 Variographie
 - Empirisches Variogramm
 - Nugget, Sill und Range
 - Variogrammodelle
- Gewöhnliches Kriging
 - Kriging Aufgabe
 - Kriging Gleichungssystem
 - Kriging Vorhersage

Kriging Aufgabe

Gemessen wurden die Werte z_1, \ldots, z_n eines geostatistischen Feldes an n Punkten x_1, \ldots, x_n . Frage wie kann man den Wert an einem weiteren Punkt x_{n+1} möglichst gut vorhersagen?

Kriging Aufgabe

Gemessen wurden die Werte z_1, \ldots, z_n eines geostatistischen Feldes an n Punkten x_1, \ldots, x_n . Frage wie kann man den Wert an einem weiteren Punkt x_{n+1} möglichst gut vorhersagen?

Kriging Gleichungssystem

Ideen:

linear(, weil einfach):

$$\hat{Z}(s) = \sum_{i=1}^{n} w_i(s) Z(s_i)$$

Unverzerrtheitsbedingung (im Mittel treffen):

$$E[\hat{Z}(s) - Z(s)] = 0$$

Fehler so klein wie möglich:

$$\operatorname{var}(\hat{Z}(s) - Z(s)) \to \min$$

Kriging Gleichungssystem

Bezeichungen:

$$\mathbf{z} = \begin{pmatrix} Z(s_1) \\ \vdots \\ Z(s_n) \end{pmatrix}, \quad \gamma = \begin{pmatrix} \gamma(s_1, s) \\ \vdots \\ \gamma(s_n, s) \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$$

$$\mathbf{1} = \left(egin{array}{c} 1 \ dots \ 1 \end{array}
ight), \quad \dot{} = \left(egin{array}{ccc} \gamma(s_1,s_1) & \cdots & \gamma(s_1,s_n) \ dots & \ddots & dots \ \gamma(s_n,s_1) & \cdots & \gamma(s_n,s_n) \end{array}
ight)$$

Gleichungssystem Ausgangspunkt

Unverzerrtheitsbedingung (im Mittel treffen):

$$E[\hat{Z}(s) - Z(s)] = \mathbf{1}^t \mathbf{w} = 0$$

Fehler so klein wie m"glich:

$$\operatorname{var}(\hat{Z}(s) - Z(s)) = \mathbf{w}^t \Gamma \mathbf{w} \to \min$$

Kriging Gleichungssystem

$$\begin{pmatrix} \gamma \\ 1 \end{pmatrix} = \begin{pmatrix} \Gamma & 1 \\ 1^t & 0 \end{pmatrix} \begin{pmatrix} \mathbf{w} \\ I \end{pmatrix}$$
$$\begin{pmatrix} \mathbf{w} \\ I \end{pmatrix} = \begin{pmatrix} \Gamma & 1 \\ 1^t & 0 \end{pmatrix}^{-1} \begin{pmatrix} \gamma \\ 1 \end{pmatrix}$$

Kriging Vorhersage

$$\hat{Z}(s) = \begin{pmatrix} \Gamma & 1 \\ 1^t & 0 \end{pmatrix}^{-1} \begin{pmatrix} \gamma \\ 1 \end{pmatrix} \begin{pmatrix} \mathbf{z} \\ 0 \end{pmatrix}$$
$$\operatorname{var}(\hat{Z}(s) - Z()) = \sigma_K^2(s)$$
$$\operatorname{var}(\hat{Z}(s) - Z()) \approx \operatorname{var}(Z(s)) - \operatorname{var}()$$

Kriging Aufgabe
Kriging Gleichungssystem
Kriging Vorhersage
Kriging Karte
Kriging Fehler
Kriging Gain
Vorhersageintervall
Kriging Eigenschaften

Kriging Karte

Kriging Aufgabe
Kriging Gleichungssystem
Kriging Vorhersage
Kriging Karte
Kriging Fehler
Kriging Gain
Vorhersageintervall
Kriging Eigenschaften

Kriging Fehler

Kriging Aufgabe Kriging Gleichungssystem Kriging Korhersage Kriging Karte Kriging Fehler Kriging Gain Vorhersageintervall Kriging Eigenschaften

Kriging Gain

Kriging Aufgabe
Kriging Gleichungssystem
Kriging Vorhersage
Kriging Karte
Kriging Fehler
Kriging Gain
Vorhersageintervall
Kriging Gair

Vorhersageintervall

Krigingergebniss

Х

> 50+01 -1e+05 2e+05

Krigingfehler

Kriging Aufgabe Kriging Gleichungssystem Kriging Vorhersage Kriging Karte Kriging Fehler Kriging Gain Vorhersageintervall Kriging Eigenschaften

Kriging Eigenschaften

- Kriging interpoliert (aber nicht unbedingt stetig am Messpunkt)
- Kriging ist das beste lineare erwartungstreue Verfahren,
 - wenn das Variogram und die Voraussetzungen (Stationarität) stimmen.
 - Aber das Beste ist nicht unbedingt gut.
 - Linear und Erwartungstreu sind Bug und Feature zugleich
- Kennt seine eigene Genauigkeit (Besser wissen das man etwas nicht weiss als irren)

Kriging Aufgabe
Kriging Gleichungssystem
Kriging Vorhersage
Kriging Karte
Kriging Fehler
Kriging Gain
Orhersageintervall
Kriging Bizenschaften

Kreuzvalidation

Validation

- Einfache Validation:
 Bisher unbeobachtete
 Punkte Vorhersagen und prüfen
- Kreuvalidation: Jeden Punkt einmal weglassen und vorhersagen.

Zufallsfelder Variographie **Gewöhnliches Kriging** Fortgeschrittene Lineare Geostatistik Nichtlineare Geostatistik Kriging Aufgabe Kriging Gleichungssystem Kriging Vorhersage Kriging Karte Kriging Fehler Kriging Gain Vorhersageintervall Kriging Eigenschaften Kreuzvalldation

Kriging Schritt für Schritt

<-+>Probenplan erstellen (Versuchsplanung später)Räumliche Daten erheben (Koordinaten und Werte)Datenexploration / Voraussetzungen untersuchenVariographieKriging durchführenKriging FehlerkarteKreuzvalidationSchlüsse ziehen

Gliederung

- - Regionalisierte Variablen
 - Abhängigkeit
 - Stationarität
 - Variogramm
- - Empirisches Variogramm
 - Nugget, Sill und Range
 - Variogrammodelle
- - Kriging Aufgabe
 - Kriging Gleichungssystem

Universelle Kriging

Herausforderung: Was tun wenn ein Trend vorliegt und das Zufallsfeld daher nicht stationär ist.

Lokales Kriging

Herausforderung: Was tun, wenn man zu viele Daten hat oder die Mittelwerte sich lokal verändern.

Indikator Kriging

Herausforderung: Was tun, wenn man die Verteilung braucht und nicht nur den Mittelwert.

Duales Kriging

Herausforderung: Was tun, wenn man sehr viele Punkte interpolieren muss und der Computer nicht hinterherkommt.

Lognormal Kriging

Herausforderung: Was tun, wenn man ein positives Zufallsfeld schiefe Verteilungen hat.

Transgaussches Kriging

Herausforderung: Was tun, wenn weder normal noch log-normal stimmen.

Disjunktives Kriging

Herausforderung: Was tun, wenn linear so gar nicht optimal ist, weildie Verteilung so gar nicht normal ist.

Einfaches Kriging

Herausforderung: Was tun, wenn der Trend bekannt ist.

Block Kriging

Herausforderung: Was tun, wenn man den

 $Mittelwert/Gesamtmenge\ in\ einem\ Gebiet\ braucht.$

Kriging linearer Funktionale

Herausforderung: Was tun, wenn man statt der Höhe das Gefälle braucht.

Gliederung

- Zufallsfelder
 - Regionalisierte Variablen
 - Abhängigkeit
 - Stationarität
 - Variogramm
- 2 Variographie
 - Empirisches Variogramm
 - Nugget, Sill und Range
 - Variogrammodelle
- Gewöhnliches Kriging
 - Kriging Aufgabe
 - Kriging Gleichungssystem
 - Kriging Vorhersage