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Abstract

For the geostatistical treatment of compositional data it s common to trnsform the data
to logratios. Several logratio transformations are available and invariance of the results
under the choice of logratio transform is desirable, but this is not automatically satisfied
for geostatistical simulation where it is common that the data are first mapped to Gaussian
space. The usual method, the normal score transform, is not independent of the choice of
logratio nor are the transformed data multivariate normal. In this contribution a method is
proposed based on an affine-equivariant kernel density estimation, which is then continuously
deformed to a multivariate standard normal distribution. The anamorphosis is achieved via
the co-deformation of the underlying space. The method is illustrated and compared with
existing alternatives using a case study from a Westaustralian iron ore mining operation.

1 Introduction

Compositional data analysis proposes a simple workflow for the (geo)statistical treatment of data
in percentages, ppm, proportions, etc, data which represent the relative mass/weight/importance
of several components forming a system. This is: transform the data with an appropriate lo-
gratio transformation, analyse the transformed scores, and finally back-transform the obtained
results (model coefficients, predictions, interpolations, simulations, etc). Several logratio trans-
formations (alr, clr, ilr) have been proposed, and in some applications one might have advantages
over other. However, for geostatistical applications, most often the question is to obtain equal
(or equivalent) results with any of the transformations. Cokriging has been proven to yield inter-
polations invariant with respect to the choice of logratio (Tolosana-Delgado, 2006), a property
known as affine equivariance.

In the case of simulation algorithms this invariance also holds, as long as the assumption of
Gaussianity necessary for simulation is honored. However, for most data sets it is necessary to
map data to a Gaussian space prior to simulation. The most commonly used transformation
is the normal score transform where a transformation to normal scores is achieved via quantile
matching. Another method achieves Gaussian anamorphosis via an expansion of the cdf as a
Hermite series (Rivoirard, 1984), but even though in the multivariate case variables are trans-
formed jointly to normal scores, the resulting transformed data are not multivariate normal,
even though they have standard normal marginal distributions. More recently two methods
have been presented to transform a multivariate data set into a multivariate normal data set.
The first of these is the stepwise conditional transformation (Leuangthong and Deutsch, 2003).
This method is hierarchical, with the first variable being transformed to normal scores based on
a quantile transformation, the second variable being transformed to normality conditional on
the first and so on. The ordering of the variables is recommended to be based on continuity of
the input data. The structure of the input data is restored during the backtransformation, and
no distributional assumptions about the input data are made. The transformation results in
data that are independent, but there is no guarantee that they are spatially independent. The
projection pursuit method (Barnett et. al., 2014) is based on the PPDE method of Friedman
and Tukey (1974), and as a first step the individual variables are transformed to normal scores
via a quantile matching, they are then centered and sphered. Following this the PPDE algo-
rithm is applied iteratively to yield multivariate normal data. One of the steps in each iteration
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is a normal score transform by means of a quantile matching. As was the case for the stepwise
conditional transformation the transformed variables are uncorrelated at lag 0 by construction,
but this may not be the case for non-zero lag separations. What is common in all of these
methods is the reliance on a quantile matching to obtain normal scores, and as a result a lack
of affine equivariance. That is, the transformations depend on the choice of logratio and so the
use of one or another (log)ratio transform will lead to different sets of normal scores which in
general do not have any relationship between them. Thus conditional simulations will depend
on the (arbitrary) choice of logratio transform, an undesirable characteristic. It is therefore
necessary to develop an alternative anamorphosis that has the equivariance property. In this
paper one such method is introduced and its features are explored.

2 Compositional transformations

A data set is considered of compositional nature if its variables describe the relative importance
of some components forming a whole. Typically, this relative importance is described in % or
other proportional units (parts in one, ppm, ppb, ppt, and so on). Geochemical data sets are
archetypical examples of compositional data, formed by non-negative variables (as a negative
proportion of one element is impossible), and for each datum, all variables should sum up to
100% or less.

In a composition y = [y1, y2, . . . , yD] with D components, these conditions are stated as
yi ≥ 0 and

∑D
i=1

yi ≤ 100%. When identified with a point in D-dimensional real space R
D, the

set of points satisfying these conditions is called the D-part simplex, denoted SD.
To account for the relative nature of the information inherent in the data, ratios of compo-

nents should be analysed, instead of the raw components and for mathematical reasons, it is
better to analyse logratios than ratios (Aitchison, 1986). Several families of logratios have been
proposed as standard tools. They include the pairwise logratio transformation (plr, (Aitchison,
1986)), the additive logratio transformation (alr, (Aitchison, 1986)),the centred logratio trans-
formation (clr, (Aitchison, 1986)) and the isometric logratio transformation (ilr, (Egozcue et.
al. , 2003)). A pairwise logratio transformation expresses a composition with the D(D − 1)
possible pairwise logratios ζij = ln(yi/yj)). For the alr transformation, a family of logratios is
computed relative to a fixed component, often the last: ζi = ln(yi/yD). In matrix notation this
can be written as

alr(y) = F · lny, F = [ID−1, −1D−1],

For the centred logratio transformation D scores are computed as logarithms of quotients of the

components and the geometric mean of the components g(y) = D

√

∏

j yj : ζi = ln(yi/g(y)). In

matrix notation the transformation can be written as

clr(y) = H · lny, H = ID −
1

D
1D · 1tD,

where the logarithm is applied component-wise, the matrix ID is the D × D identity matrix
and 1D is a (column-)vector with D ones. The inverse of the clr transformation is

clr−1(ζ) =: C[exp(ζ)] = y, (1)

where the closure operation

C[y] =
100

1tD · y
y

forces the argument to a constant sum 100% without changing the ratios between the compo-
nents.

Finally, an isometric logratio transformations can be defined by means of a (D − 1) × D
matrix V

ilr(y) := V · lny,
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where V ·Vt = ID−1 and V · 1D = 0D−1, i.e. which columns are orthogonal vectors and each
sums up to zero. These logratio transformations are related through the equivalences

ilr(y) = V · clr(y), clr(y) = Vt · ilr(y) (2)

alr(y) = F · clr(y), clr(y) = H∗ · alr(y), (3)

where H∗ represents the matrix H without the last column. With these expressions and Eq.
(1), the inverse isometric logratio transformation is given as ilr−1(ζV ) = C[exp(Vt · ζV )], where
ζV denote the ilr-transform of a composition relative to V.

To statistically describe a random compositional data set Y, expected value and variability
can be conmputed using the logratio transformed data. The choice of logratio transformation is
irrelevant, as the statistics in each representation can be recovered from any other representation.
With regard to the means,

clr−1(E[clr(Y)]) = ilr−1(E[ilr(Y)]) = alr−1(E[alr(Y)]) = cen(Z), (4)

the closed geometric mean, by definition called the geometric center of the random composition
(Aitchison, 1986). To characterize variability, one can use the covariance matrices of alr-, clr-
respectively ilr-transformed compositions, Γ = [γij ] = Var[alr(Y)] , Ψ = [ψij ] = Var[clr(Y)]
and ΣV = Var[ilr(Y)]. These matrices are all related to each other through the linear relations
(Aitchison, 1986; Egozcue et. al. , 2003)

ΣV = V ·Ψ ·Vt, Ψ = Vt ·ΣV ·V, (5)

Γ = F ·Ψ · Ft, Ψ = Ht
∗
· Γ ·H∗, (6)

All these expressions (4-6) hold for the population expectation and variance of a theoretical
random composition, because the mean vector and the covariance matrix are affine equivariant
properties of the random composition. Moreover, for any compositional sample, most com-
monly used estimators of these quantities are also affine equivariant, and thus satify the same
equivalences (Eqs. 4-6). This is the case for the classical estimators (moment estimators and
maximum likelihood estimators, Tolosana-Delgado, 2006) as well as some robust estimators
(minimum covariance determinant covariance and mean, Filzmoser and Hron, 2008), but not
for rank-based estimators (median, interquartile range), as the data are ordered in different
non-compatible ways with each logratio.

3 Some concepts of multivariate geostatistics

Geostatistics offer a set of tools for modeling the spatial dependence of a data set, with the
focus on obtaining estimates or simulations of its variables, based on the formalism of random
functions (Matheron, 1965). Consider a domain D in 2D or 3D space. Let x be the coordinates of
any point within that domain. A vector-valued random function is the collection of all random
vectors indexed by this spatial index, Z(x). The vector-valued random function φ(Z(x)) is
multivariate gaussian if it is fully determined by its mean value µ(x) = E [φ(Z(x))] and its
covariance function C(x, x′) = var [φ(Z(x)), φ(Z(x′))],

We further assume that the property of intrinsic stationarity is satisfied: the expectation
and variance of the relevant increments of the random function are not spatially-dependent,
E [Z(x+ h)− Z(x)] = 0 and var [Z(x+ h)− Z(x)] = 2Γ(h). The function Γ(h), the well-
known (semi)-variogram, depends only on the lag displacement h between the sample locations
( h = x′ − x ), but not on the exact locations.

Once a model of the variogram is available, standard geostatistical techniques for example,
ordinary cokriging or cosimulation to obtain values for the φ-transformed vector at unsampled
locations, φ(Z0) = φ(Z(x0)), which can be back-transformed to obtain predictions or simulations
in the original scale.
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In the case of a compositional random function, the mean µ is a vector of the same length
as (Z) (i.e. D if the clr is used, and D − 1 if the alr is used), and its alr and clr versions are
related through Eq. (3). In the same way, variograms and covariance functions are matrices of
D ×D or (D − 1) × (D − 1) elements (respectively with clr and alr transformations), and the
two versions of these matrices are linked to each other through Eq. (6).

4 Flow characterization of a multivariate anamorphosis

The multivariate anamorphosis proposed here is based on ideas borrowed from Lagrangian me-
chanics. We will construct a flow that shifts the data towards the center of the multivariate
normal distribution. The anamorphosis is achieved via the co-deformation of the underlying
space. Given a set {zi, i = 1, . . . , n} ∈ R

D of vectors with variance-covariance matrix Σ, as-
sume that each vector zi represents the center of a smoothing kernel Ki. From a Lagrangian
perspective the motion of the kernel can be described by the location of its center at time t

zi(t) = (1− t)zi

and the time dependent spread of the smoothing kernel is assumed to be a linear function of
time:

σ(t) = (σ1 − σ0)t+ σ0 (7)

Thus at time t = 0 the center of the kernel Ki(0) is located at zi and its spread is equal to σ0
and at time 1, the kernel Ki(1) has center 0 and spread σ1. Time dependent normal scores are
defined relative to the variance covariance matrix of the data and the spread of the kernel at
time t by

si(z, t) = L−1
z− zi(t)

σ(t)
(8)

where z denotes a point of the kernel and the matrix L is the lower triangular factor in the
Cholesky decomposition of the variance covariance matrix: Σ = LLt. The local movement for
the mass of the smoothing kernel Ki is given by:

X(t̃; z, i, t) = zi(t̃) + Lsi(z, t)σ(t̃) (9)

and the corresponding speed is

vi(z, t) =
∂

∂t̃
X(t̃; z, i, t)

= −zi +
σ1 − σ0
σ(t)

(z− zi(t))

Next define the mean speed as

v(z, t) =

∑

wivi(z, t)
∑

wi

where the weights at time t are defined as

wi(z, t) = exp

(

−
1

2
‖si(z, t)‖

2

)

, i = 1, . . . , n

The equation of motion from the raw data to Gaussian space then is given by

∂

∂t
g(t) = v(g(t), t)
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Figure 1: Trajectories for the flow transformation

where g(t) denotes the position of a point at time t and that from Gaussian space back to raw
data space is:

∂

∂t
r(t) = −v(r(t), 1− t)

These equations of motion will be solved numerically to obtain the normal scores and back-
transforms respectively.
The above flow transformation has the following properties:

• The flow is invariant under affine transformations.
Suppose that the points and smoothing kernel centers are subjected to the affine trans-
formation

ζ = Az+ b

and that the movement at points at time t is given as ζ(t) = Az(t) + (1 − t)b, when
the affine transformation is taken into account, then the motion field at the transformed
locations is

vi(ζ, t) = −ζi +
σ1 − σ0
σ(t)

(ζ(t)− ζi(t))

= −Azi − b+
σ1 − σ0
σ(t)

(Az(t) + (1− t)b− (Azi(t) + (1− t)b))

= −Azi − b+
σ1 − σ0
σ(t)

(Az(t)− (Azi(t)))

= A(−zi +
σ1 − σ0
σ(t)

(z(t)− zi(t)))− b

= Avi(z, t)− b

• The normal scores depend on the initial spread of the kernels σ0.
This is a direct consequence of the scaling impacting on the time dependent normal scores
and so resulting in slightly different speeds of the flow field.
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An example of the flow anamorphosis is shown in Figure 1. Here the initial bivariate distribution
of the data is annular (top left). The application of the anamorphosis proceeds by first moving
points towards the origin and then pushing them back out towards the periphery (bottom
right), resulting in a more circular scatter plot (bottom left). In the process, neighbourhood
relationships are preserved: data pairs that were close originally are close in the final bivariate
distribution and vice-versa.

5 Case Study

5.1 Data description

This study used a single bench of 6 m long blast hole (BH) samples from an iron ore mine located
in the central Yilgarn, Western Australia (Ward and Mueller, 2012). The bench consists of five
discrete rotated fault imbricates. The longest strike distance within each horst (constrained by
the angular tolerance) is 60 meters. only the western part of the bench is considered. Seven
analytes measured in weight percent were available within the dataset, although only the three
main elements of interest for iron ore mining (Fe, SiO2 and Al2O3) were examined. As these
analytes on their own form a subcomposition, a filler variable r was introduced in order to
satisfy the constant sum constraint. The data exhibit the typical hematite enriched iron ore
distributions; negatively skewed Fe, positively skewed SiO2 and Al2O3 distributions (Table 1).
The scatterplots also display typical behavior; strong negative correlation both between Fe and
Al2O3, between Fe and SiO2 (−0.91 and −0.90), and strong positive correlation between SiO2

and Al2O3 (0.93).

Table 1: Descriptive statistics of BH analytes

Variable n Min Max Mean Std. Dev. CoV

Al2O3 400 0.12 8.53 1.42 1.43 1.01
Fe 400 51.09 69.45 63.94 2.76 0.04
SiO2 400 0.34 10.09 2.22 1.81 0.82
r 400 27.77 35.34 32.10 1.18 0.04

The data were alr-transformed by putting

alrX = ln(X/r) (10)

where X ∈ {Al2O3, Fe, SiO2}. Of the three variables, only alrFe follows a normal distribution
(Table ), and the correlations between the transformed variables are −0.35, −0.35 and 0.93 for
Al2O3 − Fe, SiO2 − Fe and SiO2 − Al2O3 respectively. A transformation to normal scores is
therefore required prior to any simulation of the data.

Table 2: Descriptive statistics of alr-variables

Variable n Min Max Mean Std. Dev. SW

alrAl2O3 400 -5.61 -1.23 -3.54 0.91 7.051e-05
alrFe 400 0.48 0.88 0.68 0.05 0.9943
alrSiO2 400 -4.61 -1.06 -2.96 0.74 0.9717
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5.2 Flow anamorphosis and projection pursuit transform

To apply the flow anamorphosis, the setting of the initial density σ0 needs to be determined.
The following criteria were used to determine a suitable value: the multivariate normality of
the transformed data, symmetry and spread (as measured by the interquatile range) of the
distributions. In the case of the data considered here, the resulting multivariate distribution
is multivariate normal for values σ0 ≤ 0.5 and the resulting univariate distributions are ’rea-
sonably symmetric for σ0 ≤ 0.05. It was therefore decided to set σ0 = 0.05. In addition the
three transformed variables are uncorrelated (correlation coefficients for V 1−V 2, V 1−V 3 and
V 2−V 3 are −0.005, 0.000 and 0.003 respectively) and therefore independent. Consideration of
the omnidirectional experimental semivariograms and cross-variograms (see Figure 2) further
shows that the transformed variables are spatially uncorrelated (with a mean value of Tercan’s
τ (Tercan, 1999) equal to 0.043).

Table 3: Descriptive statistics of FA-variables and PPMT variables

Variable n Min Max Mean Std. Dev.

FlowAnaV 1 400 -2.42 2.87 -0.0007 0.947
FlowAnaV 2 400 -2.48 2.36 0.0111 0.931
FlowAnaV 3 400 -2.42 2.38 -0.0054 0.929

ppmtV 1 400 -2.91 3.21 0 0.999
ppmtV 2 400 -2.77 2.88 0 0.998
ppmtV 3 400 -2.83 2.97 0 0.998

Figure 2: Omnidirectional experimental semivariograms and cross variograms for FA-transformed data

Like the flow normal scores the ppmt normal scores result in variables that follow a multi-
variate normal distribution. It should be noted that the standard deviations for the transformed
variables are closer to unity than in the case of the flow-anamorphosis, a consequence of the
repeated application of the nscore transform in ppmt. The three transformed variables are
uncorrelated (correlations between the variables are 0.0011, −0.0022 and 0.0034) and just as in
the case of the flow-anamorphosis the omnidirectional experimental semivariograms and cross-
variograms show little evidence of spatial correlation (Tercan’s τ equal to 0.045).
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Univariate simulation can therefore be used to generate realisations of the FA and PPMT
normal scores. The three variables show anisotropy which is consistent with the strike direction
of the western part of the bench, nested structures consisting of a nugget and up to 3 spherical
transition structures were required to achieve the mix of zonal and geometric anisotropies in
the data. Similarly, parameters for the direct variograms of the ppmt-variables indicate a mix
of zonal and geometric anisotropy.
The models were validated using leave one out cross-validation with simple kriging as the

Table 4: Parameters for variogram models of FA and PPMT variables

Variable Nugget Direction Sill Range Sill Range Sill Range

FlowAnaV 1 0.30 N70 0.59 (26.5, 29) 0.17 (∞, 17)
FlowAnaV 2 0.31 N80 0.15 (8, 8) 0.43 (48, 40) 0.17 (∞, 48)
FlowAnaV 3 0.12 N80 0.51 (8.2, 8.2) 0.25 (30, 8.2)

ppmtV 1 0.31 N80 0.68 (22, 22) 0.14 (∞, 22)
ppmtV 2 0.50 N80 0.55 (49, 35) 0.14 (∞, 35)
ppmtV 3 0.25 N80 0.50 (9, 9) 0.12 (33, 10)

estimation algorithm. In each case a minimum of 4 samples and a maximum of 12 samples were
used within an ellipse of major axis 30m and minor axis 20m oriented according to the direction
of greatest continuity of the relevant variogram model. The results in Table 5 demonstrate that
the models are suitable for simulation.

Table 5: Cross-validation results for variogram models of FA and PPMT variables

Variable ēst Var(est) corr(Z,Z∗) Corr(Z∗,est)

FlowAnaV 1 -0.007 1.021 0.626 0.009
FlowAnaV 2 -0.003 0.879 0.666 -0.038
FlowAnaV 3 -0.020 0.909 0.559 -0.026

ppmtV 1 -0.006 1.095 0.603 0.043
ppmtV 2 -0.002 0.838 0.667 -0.043
ppmtV 3 -0.021 0.922 0.541 -0.028

5.3 Simulation results

Turning bands simulation with 500 bands was used to generate 100 realisations of each of the
6 variables, followed by back transformation first to alr-space and then back to the simplex.
The simulations based on the flow-anamorphosis have reproduced the sample statistics reason-
ably well: For Fe, the sample mean is reproduced, while for Al2O3 and SiO2 there is slight
underestimation of the target, standard deviations tend to be slightly underestimates with the
sample standard deviations falling between the upper quartile and the maximum of the real-
isation statistic. The overall reproduction of the Cdf is satisfactory (see Figure 3) and the
correlations between the three variables are close to those of the input data. The shape of the
scatter diagrams also approximate those of the input data (see Figure 4). An inspection of the
spatial maps of the realisations showed no artefacts. For the projection pursuit method, the
statistics are still acceptable, but not as well reproduced, which is also evidenced in the qq-plots
of realisations against samples, notably overestimation in low values for Fe and underestimation
of high values for high values of the remaining attributes (see Figure 3).
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Figure 3: QQplots of selected realisations against input data : FA realisations (top) , PPMT realisations (bottom)
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Figure 4: Scatter plots : input data (top), FA-realisation (center), PPMT-realisation (bottom)

6 Concluding Comments

The method presented in this contribution appears to adequately address issues raised related to
the lack of affine equivariance of standard transformations to multivariate normality. The case
study together demonstrates our method’s effectiveness in application to real data. It should be
noted however that the spread of the transformed distributions depends on the initial scaling
factor 0, and the number of variables. The range of the transformed variables increases with
decreasing scaling factor and for fixed scaling factor, the range for the transformed variables
decreases with increasing number of variables. So a tuning of the scaling parameter prior to
simulation is essential. Lastly, the current implementation is relatively slow, limiting the size of
the data sets that can be handled. Whilst the projection pursuit method does not perform as
well as the flow anamorphosis introduced above and adaptation of it by replacing the quantile
matching by a different rescaling might also offer a good alternative.
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théorie des fonctions aléatoires aux sciences de la nature Masson et Cie, Paris pp 305.

Rivoirard, J. (1984). Une methode d’estimation du recuperable local multivariable. Note
894,CGMM, Mines-Paris Tech pp 10.

Tercan, A.E. (1999). The importance of orthogonalization algorithm in modeling conditionald
istributions by orthogonal transformed indicator methods. Mathematical Geology 31 (2),
155–173.

Tolosana-Delgado, R. (2006). Geostatistics for constrained variables: positive data, composi-
tions and probabilities. Application to environmental hazard monitoring PhD Thesis, Uni-
versitat de Girona (Spain) pp 198.

Ward, C. and Mueller, U. (2012). Multivariate estimation using logratios: a worked alternative.
In P. Abrahamsen et al, editors Geostatistics Oslo 2012, pp 333–343.

IAMG2015 - Proceedings G1901

ISBN 978-3-00-050337-5 (DVD) 1311


