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Abstract 

A geostatistical version of the classical Fisher rule (linear discriminant analysis) is presented. 
This method is applicable when a large dataset of multivariate observations is available within a 
domain split in several known subdomains, and it assumes that the variograms (or covariance 
functions) are comparable between subdomains, which only differ in the mean values of the 
available variables. The method consists on finding the eigen-decomposition of the matrix     , 
where   is the matrix of sills of all direct- and cross-variograms, and   is the covariance matrix of 
the vectors of weighted means within each subdomain, obtained by generalized least squares. The 
method is used to map peat blanket occurrence in Northern Ireland, with data from the Tellus 
survey, which requires a minimal change to the general recipe: to use compositionally-compliant 
variogram tools and models, and work with log-ratio transformed data.  

 

1 Introduction 
If a sufficiently large regionalized multivariate data set has been obtained across several subdomains, 
it is possible to attempt to discriminate the several subdomains by making use of the available 
regionalized variables. This can be of use, for instance, to delineate on a map geologic or 
environmental units from geochemical information (predictive mapping, e.g. Grunsky, Mueller and 
Corrigan, 2014; or mineral potential mapping, e.g. Schaeben, 2012). This contribution presents a 
solution to this problem based on adapting the well-known Fisher rule of discriminant analysis to the 
case of spatially-dependent data.  
 

2 The method 

2.1 Notation and the non-spatial Fisher rule 
Let the region of interest   be split into   different, disjoint sub-domains             . Let 
a regionalized  -component random vector      be intrinsic stationary defined on the whole region  , 
but having a different mean within each sub-domain, i.e. if the location      then  [    ]         , where  [ ] denotes an expected value. That intrinsic stationarity condition implies that 
there exists a matrix-valued function      describing the covariance matrix of spatial increments, i.e.    [           ]       if both   and     belong to the same sub-domain; or in general 
  [(           ) (           )]       (     ) (     ), (1) 

 
if they belong to different sub-domains    and   . Here  [ ] denotes the  -component mean vector of 
of a random vector. A regionalized data set of size   will be denoted by {          }, where at each 
of location    a vector of   observations          [             ] is available. All vectors are 
considered row-vectors in this contribution. 
     In a non-spatial context, the Fisher rule states that the best (linear) discrimination between the 
domains (known as data groups) occurs on the subspace defined by the eigenvectors of the non-
symmetric matrix (e.g. Fahrmeir and Hammerle, 1984) 
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       , (2) 
 
where   is the common within-group covariance matrix, and   is the between groups covariance 
matrix. Denote the number of samples, mean (row-)vectors and (maximum likelihood) covariance 
matrix estimates within the  -th group are denoted respectively as   ,  ̂  and  ̂ . Take the global mean  
  ̂  ∑    ̂      (3) 

 
i.e. a weighted mean with weights        , and the total size of the data set   ∑       . Then the 
within-group covariance matrix is estimated by  ̂  ∑    ̂    and the between-group covariance as   
  ̂  ∑     ̂   ̂    ̂   ̂       (4) 

 
where    denotes   transposed. Plugging these estimates into Eq (2) delivers an estimate  ̂ to treat 
with any existing eigenvalue decomposition routine. 

2.2 The (theoretical) spatial Fisher rule 
The adaption of the Fisher rule to the case of a regionalized random vector is quite trivial, as the 
within-group covariance matrix is by definition the double of the common variogram sill 
            [           ]        
  
(assuming that   and     remain within the same sub-region or group, no matter which). Here    [ ] denotes the      - matrix of the coefficients of a  -component vector with the coefficients 
of another  -component vector. The theoretical between-group variance does not imply a major 
difficulty either, as the weighting can simply be done using the size |  | of each region   , i.e.   ∑                    , with    |  | | | and   ∑         . Plugging these values into 
Eq (2) delivers the matrix   of interest.  

3 The practical spatial Fisher rule 

3.1 Estimating the within-region covariance 
If a regionalized multivariate data set is available, one can derive estimates of the matrices   and   
which take the spatial dependence between the observations of the regionalized data set into account. 
For this, the only requisite is to have obtained a fitted model    | ̂  of the theoretical variogram     , 
no matter in which way. Again,   is estimated by the sill of the variogram model, by definition, 
  ̂    ( | ̂)  (5) 

3.2 Estimating the region means and the global mean 
The empirical between-group variance requires obtaining estimates of the mean of each sub-region,  ̂ to  ̂ , as well as a sort of global mean  ̂. Each group mean can be obtained with a generalized least 
squares approach (Wackernagel, 2002), 
  ̂  (         )  (         ), (6) 
 
with    the vector of all observation in   , and the following        - and       -block matrices 
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   [                      ]  and     [     ]  

 

formed by blocks of the form      ( | ̂)     (     | ̂) and    the      -identity matrix; that 

is,    has           elements, while    has         elements and    is a vector of       
components. Note that these matrices are exactly the same as those used in ordinary cokriging, and 
that Eq. (6) is actually equivalent to block cokriging within the region    (Wackernagel, 2002). With 
these insights, the global „mean“ estimate  ̂ (whatever it is), could be obtained by block cokriging 
within the whole region  , i.e with the analogous expression 
  ̂  (      )  (      ), (7) 
 
with   the vector of all      observations,   the       -component matrix of identity blocks, and 

the matrix   is filled with blocks       ( | ̂)     (     | ̂) as well, as if the two data points 

would be placed on the same domain. 

3.3 Estimating the between-region covariance 
A final difficulty might appear to estimate the between-region covariance  , namely that we do not 
know the weights            in the regionalized case. Our proposal is to derive them from the 
interpretation of the global mean as a weighted average, i.e. from Eq. (3). Unfortunately, to the authors 
knowledge, there is no guarantee that this linear system of   equations (one for each component of 
these mean vectors) on   unknowns (the weights) has a unique solution, or that these weights are 
positive and sum to one, as required to use them in Eq. (4). In general, these two conditions (which 
define an end-member problem) will only be satisfied if the global mean  ̂ belongs to the interior of 
the convex hull defined by the   sub-region means,  ̂ to  ̂  (Weltje, 1997; Tolosana-Delgado, von 
Eynatten and Karius, 2011; Konsulke et al, 2015). However, given the smoothing nature of the kriging 
systems (Eq. 6) and (Eq. 7) and that the estimation of  ̂ involves averaging all the data averaged in 
each  ̂ , it appears reasonable to assume that this convex hull condition will be satisfied most of the 
times, at least approximately. Thus, we can assume that some positive weights  ̂   ̂     ̂  
summing to 1 will be available by some of the methods mentioned by the authors cited before. 
     Once these weights are available, it is immediate to use them with all regional and global mean 
estimates on Eq. (4) to derive an estimate  ̂, that can be used together with  ̂ (Eq. 5), and then 
plugged into Eq. (2) to obtain the matrix  ̂ to eigendecompose. 
     Note that all these complications do not occur in the case that the discrimination is desired between 
only two groups. In this case, the global mean and the weights are not necessary because the desired 
eigenvectors can be obtained using the matrix  ̂    ̂   ̂     ̂   ̂   within Eq. (2). 

3.4 Mapping the discriminant functions 
Let us assume that the eigenvectors {          } of  ̂ are available. The question is now how to 
generate maps of the discriminant scores          [             ], where each score           
is a scalar product (projection) of one original observation times with one eigenvector. Three options 
appear, ordered by increasing computational complexity and decreasing (co)kriging error (Myers, 
1983): 

1. To apply ordinary kriging to each score separately, namely: (1) choose one eigenvector   ; (2) 
project the matrix-valued variogram model onto its direction,   ( | ̂)       | ̂    ; (3) take 
its scores {             }; and (4) krige them with that projected variogram   ( | ̂). 

2. To apply ordinary cokriging to all   scores simmultaneously, namely: (1) order the 
eigenvectors in a      -matrix  ; (2) project the      -matrix-valued variogram model onto a      -matrix-valued one,   ( | ̂)      | ̂   ; (3) take all scores {          }; and (4) 
cokrige them with that projected variogram   ( | ̂). 
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3. To apply ordinary cokriging to the original data with the original the      -matrix-valued 
variogram model to predict the original variables on a location   , and afterwards project each 
vector of interpolated values  ̂     onto each eigenvector, namely  ̂       ̂       . 

     Note that strictly speaking, all these algorithms should either be applied within a subregion only, or 
else first each observation should be subtracted from its subregion mean, then (co)kriging applied and 
then the mean of the subregion of the interpolated point added to the result. Both approaches are 
useless if we want to use this Fisher rule to map the unknown boundaries of a subregion. Hence, we 
recommend taking the resulting maps as a sort of heuristic rule. For this reason, in our opinion the 
computational burden of options 2 or 3 is not paid off by their theoretical better error against option 1. 

3.5 Modifications with geochemical (and other compositional) data 
In case that the regionalized data set {          } is formed by  -part compositional data (probably, 
the most common case, as all spatially-resolved surveys will fall in this category: soil particle size, soil 
geochemistry, groundwater geochemistry, stream geochemistry, etc) the whole theory and practice 
presented before is applicable, with a simple pre-processing step: to transform each composition by 
any one-to-one log-ratio transformation, 
              ,  
 
i.e. for a      -matrix   of rank    , and apply the whole proposed methodology to the logratio 
score set {             }. Final results obtained (i.e. the maps of the discriminant functions) will be 
exactly the same whichever logratio transformation is used because the key equations of this method 
(Eqs. 2, 5-7) are affine equivariant, as proven by Filzmoser, Hron and Templ (2012) for Eq. (2) and 
Tolosana-Delgado (2006) for Eqs. (5) to (7).  
     Variation-variogram models proposed by Tolosana-Delgado and van den Boogaart (2013) to treat 
regionalized compositional data can also be used. In this case, the variogram model for    | ̂   used 
through Sections 3.1 and 3.2 must be obtained first from the variation-variogram model    | ̂ , by 
  ( | ̂)       ( | ̂)     

 
The rest of the methodology applies directly, with  ( | ̂) describing the matrix-valued variogram 
model of the logratio score data set {             }. 
 

 
Figure 1. Geologic sketch and situation of Northern Ireland, after Mitchell (2004) 
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4 Application 

4.1 The Tellus survey 
Northern Ireland, part of the United Kingdom situated in the north east of the island of Ireland (Figure 
1) covers less than 14,000 km2 in area but exhibits geology ranging from the Mesoproterozoic to 
Palaeogene in age (Mitchell, 2004).  The bedrock can be  simplified into a series of Caledonide 
terranes and part of a Palaeogene igneous province with distinct geological characteristics.  Superficial 
peat cover of NI was estimated by Cruickshank et al. (1998) as 16% of the land surface, more recently 
peat  cover is estimated as 12% of the land area of NI (Davies and Walker 2013). A large proportion 
of soil carbon is held within peat and organic-rich soils due to their high carbon content. In fact 
Malone and O’Connell (2009) cite that peat contains approximately 25% to 33% of the total soil 
organic carbon (SOC) worlwide (~450 GtC). This makes peat internationally significant with regard to 
the Kyoto Agreement and the global carbon cycle.  
     The Tellus project (Young and Donald, 2013), managed by the Geological Survey of Northern 
Ireland (GSNI), included a geochemical survey that saw the collection of nearly 30,000 soil, stream-
sediment and stream-water samples across Northern Ireland between 2004 and 2006.  The NI Tellus 
Survey soil samples were collected on a 2 km2 grid at depths of 5 – 20 cm (‘A’) and 35 – 50 cm (‘S’).  
The ‘A’ soil sediment samples used comprises 6862 observations of 19 geochemical variables 
analysed by x-ray fluorescence spectrometry (XRFS). Full analytical and field methods employed by 
these comprehensive regional geochemical surveys can be found in Smyth (2007).  

4.2 Variograms 
For the following geostatistical analysis, 23 variables were considered, including the major oxides, 
LOI and some trace elements which had no zero issue. The variation-variograms, the set of direct 
variograms of all possible pairwise logratios, was computed and a model was fitted (Figure 2), with 
nugget effect and three isotropic spherical structures, with ranges 5km, 20km and 70km. 

4.3 Spatial discrimination of blanket peat 
The current algorithm available for the fitting of this spatial Fisher rule is not able to cope with the 
size of the Tellus data set. Hence we opted for randomly subsampling the data set taking samples of 
size N=1000 and fitting the algorithm each time. This was repeated 200 times, thus showing the 
capabilities of the model and some of its uncertainties at once. Figure 3 shows the boxplots and kernel 
density estimates of the resulting eigenvector (200 realizations), in centered logratio representation 
(Aitchison, 1986: the centered logratio considers each variable normalized by the geometric mean of 
all variables considered). In this representation, if the boxplot of two components overlap, then their 
logratio does not influence the favorability of having blanket peat. Moreover, components with high 
positive (or negative) values have a notable positive (or negative) influence of the blanket peat 
favorability. Hence, LOI, Na2O, MgO or Sn (but not any of their ratios) and clearly Se have a positive 
effect, and CaO, SiO2, Ni and As a negative one. Group means are not reported for lack of space. 
     The conditional density plot shows the contrast between the kernel estimated probabilities for each 
value of the discriminant score to belong to a blanket peat area or not (Figure 4 left). This shows that 
the probability of belonging to a peat area is never notably larger than 2/3 for very high values of the 
favorability score (>1), and that it drops to zero for low values of it (< -2). In between it mostly 
evolves as a sigmoid curve, to a first order, with a 1/2 probability around -0.8. However, a comparison 
of the areas of known peat covered areas  with the spatial distribution of the samples colored after the 
resulting Fisher score (Figure 4 right) reveals two aspects that suggest our result is more valuable than 
a simple misclassification rate would tell. First, areas that would be identified as peat by the Fisher 
score are actually extensions of several surveyed peat occurrences, which could be an effect of a peat 
survey underestimating the real extension of peat. And second, almost all actual peat areas are found 
by the proposed methodology, with the exception of small raised bog areas, being the largest of these 
the southern coast of Lough Neagh, or potentially regions of peat degradation or extraction 
immediately north of Lough Neagh.  
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Figure 2. Variation-variogram of the 23 components considered (dimensionless vertical scale up to value 6) 
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Figure 3. Resampling boxplots and kernel density estimates of the loadings of the discriminating function 

5 Discussion and Conclusions 
We presented a modification of the well known Fisher discrimination rule able to cope with spatial 
and compositional properties of explanatory data. This, applied to a case of peat classification from a 
soil geochemistry survey in Northern Ireland provided a good identification of peat covered areas. The 
variables having a clearer effect on the discrimination were LOI or SiO2 (as expected), but other less 
expected ones, like a positive Se effect, require further attention. Peat appears to be favored by high 
Cr/Ni ratios, a consistent effect with the known Cr sink effect of peat (McIlwaine et al, 2014). The 
spatial extent of some peat areas was overestimated, while other were underestimated. In the first case 
our classification may indicate a greater spatial extent of upland blanket peat areas. In the second case, 
our classification did not identify all areas of lowland raised peat bog, and may indicate peat covered 
areas which may be at risk due to degradation. 
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Figure 4. (left) Estimated conditional density plot, giving the odds of having Blanket peat for a certain Fisher 
score. (right) Map of Fisher scores for the samples compared with regions of known blanket peat 
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