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1. Abstract

The joint log-likelihood of a normally-distributed vector can be expressed as a linear combination of
the log-likelihoods of each marginal variable in that random vector. The coefficients of this linear
combination are linked to Fisher information concepts, but also to the kriging weights, when the
random  vector  is  a  spatial  distribution.  This  allows  the  exact  estimation  of  the  posterior  or  the
maximum-likelihood distribution at an unsampled location conditional on the observed values and the
covariance structure when the joint distribution is Gaussian, but offers also a valid approach when the
marginal distributions are of any specified type.

2. Introduction

Estimation of probability density functions (pdfs) in geostatistical applications is usually done by a
kriging technique, in general a predictor expressed as a linear function of the observed data, usually
regarded as model-free. This approach has philosophical (estimating instead of giving the conditional
distribution), technical (using average squared errors instead of distances suited for probabilities, and
the linearity of the predictor) and practical (negative probabilities, or not summing up to one)
limitations, especially in hazard assessment.

Bayesian estimation of pdfs in hazard assessment is contrarily almost-always done by assuming a
model of distribution for the sample, which is taken as independent. Then, a prior model for the
parameters of the distribution is updated by the likelihood of the sample through Bayes Theorem, and
a posterior model for the parameters is obtained. Finally, this posterior easily yields the predictive
distribution or quantiles. The keystone which precludes the application of such a procedure in
geostatistical problems is the computation of the likelihood assuming an independent sample.

We propose to express the joint log-likelihood of a dependent sample by a weighted linear
combination of log-likelihoods of each element in the data set taken independently. The weights are
obtained by solving a kriging-like linear system. Assuming a joint Gaussian model, the log-likelihood
is exactly reproduced, whereas for other models we obtain a first-order approximation. The weights
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are nevertheless not used in a kriging estimator but to obtain directly a probability density function,
conditional on the prior knowledge, the observations and the assumed marginal model for the data set.

This preliminary approach always yields valid conditional distributions, which do not present negative
probabilities or order-relation violations. Furthermore, the calculated conditional pdf is an
approximation and not only an estimation, as in indicator or disjunctive kriging. However, we still
lack an assessment on the goodness of this (first-order) approximation, a rigorous treatment for
general models, and algorithms to estimate the necessary conditional metric covariances.

3. A Closer Look to the Problem

We are considering the geostatistical prediction of probabilities at unobserved points from observed
observations at different locations. This estimation of conditional probabilities is classically treated
by indicator kriging or disjunctive kriging. However both approaches have the problem: they can
yield negative or inconsistent probabilities. This can not be solved in a linear framework and is in
our opinion mainly due to the dishonouring of the geometry of probabilities, where 0.2 is much
more similar to 0.1 than 510−  to 1010− , and especially than 0.01 to 0 or much worse to -0.09. The
whole approach of using mean squared errors for probabilities ignores that a zero probability is a
very radical assertion when quantifying hazard. This problem is very similar to the discussion on the
geometry in the simplex (Aitchison, 1986) since a probability can be seen as an element in a simplex
of two parts.

There might be situations where such a relative reasoning is regarded as inadequate (e.g., integrated
probabilities—like the probability of exceeding a small threshold over a block—, or the proportion of
blocks sent to the mill) or as unimportant when only small estimation variation is involved. However
when trying to estimate a consistent conditional probability distribution (taking care of constraints and
reasonable extreme probabilities), this log-like scale is the first step towards a new approach.

The following idea in that line might be: let us transform the probability to log-odds and do kriging on
them. However, trying to implement it, immediately reveals a second theoretical misconception in the
indicator approach for probabilities. The idea of indicators is to interpolate a 0-1 field and not to
estimate a conditional probability. And this is exactly why it works so well for ore block approach
mentioned above, where we ask for an expected portion of good ore. Conditional probabilities do not
have a true value independent of observation. The conditional probability changes with every new
observation. This is really different from the classical interpolation problem of kriging, where the
value at the unobserved location stays the same regardless what we observe. If we had the full

multivariate distributional model expressed by a joint density ( ))(),...,(),( 10 nxZxZxZf  we could

calculate the conditional distribution by the total probability law:
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Here conditional probabilities are calculated rather then estimated. However it is practically
impossible to estimate the whole joint probability from a set of observations at some locations, when
the joint probability distribution is unknown. In this case, the choice of a model of distribution is
unavoidable. Note that Bayesian-Maximum Entropy methods (Christakos, 1990) select the joint
distribution with highest Entropy among those satisfying some constraints. Our approach will be to
simply choose bivariate models and combine them in an adequate way.

4. Bayes Updates and Log Likelihoods

The general idea of disjunctive kriging is to reduce the knowledge needed to give an optimal predictor
to bivariate distributions by restricting the class of allowable estimators to sums of functions
depending on one of the observations only. For the calculation of conditional distributions this seems
straightforward by the Bayesian theorem (Leonard and Hsu, 1999):
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Taking logs and removing the closing constant this reads in terms of loglikelihoods
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showing a linear structure. However this is only valid, when the ( ) ( )nxZxZ ,...,1  are independent

conditional to ( )1xZ . If not the sequential updating procedure becomes much more complicated with
dependent observations:
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and needs again the whole joint distribution encoded in conditionals. Taking logs reveals the
difference:
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It is still a linear combination of information in the log likelihoods, but each likelihood depend on the

whole set of observations (thus there must be a removal of repeated information, e.g. if ( )3xZ  is

independent of ( )0xZ  conditionally on ( )2xZ , then ( ) ( ) ( )( )203 ,...,| xZxZxZli  is constant seen as a
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function of ( )0xZ  and does not change anything). In kriging, a similar effect is known as screening.

Our suggestion is to replace ( ) ( ) ( )( )10 ,...,| −iii xZxZxZl  with ( ) ( )( )0| xZxZl ii , but to remove the

redundant information as simply as possible, using only a minimum of information on the joint
probability law. We expect that a linear unbiased approach would only need information on the
covariance of likelihoods, and would successfully remove the repeated information about the mean.

Therefore, we look for a set of weights ijλ  such that the following expression is approximate in some

sense:
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Here each ijλ  can be seen as a full tensor operator, as a diagonal operator or as a scalar. In this paper,

we consider only the last option, thus ℜ∈ijλ . Whatever procedure we finally use to estimate ijλ , we

will end with a simpler form of an estimated or approximated version

( ) ( ) ( )( )nn zxZzxZxZl == ,...,| 110  of ( ) ( ) ( )( )nn zxZzxZxZl == ,...,| 110 ,  in  the  form  of  a  weighted

sum of univariate likelihoods.
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for some new weights iλ .

5. Finding Weights for the Joint Loglikelihood

A first consideration to find the optimal weights is that ( ) ( ) ( )( )nn zxZzxZxZl == ,...,| 110  can not be

predicted from the other likelihoods, since otherwise it would be possible to use that information to
get a better update. In a linear framework we can only consider linear dependency, which is expressed

by correlation. Thus the weights should make the ( ) ( ) ( )( )nn zxZzxZxZl == ,...,| 110  pairwise

uncorrelated. Since our loglikelihoods are functions and we are restricted to scalar weights, we need a
scalar measure of correlation. This can be given by a metric covariance in a Hilbert space of the

loglikelihoods. We propose to use ( )µ2L  for some µ  with the scalar product

∫ℜ
= )()()(),( zdzgzfgf µ , which means that the metric covariance
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[ ] [ ]( )[ ]gEgfEfEgf −−= ,),cov(  will be the average covariance over all values of z with respect to
some measure µ . A good choice for µ  could be the marginal distribution of z.. The important
object here is the expected conditional metric covariance of the likelihoods:

( ) ( )( ) ( ) ( )( ) ( )[ ] ( ) ( )( ) ( ) ( )( ) ( )[ ]( )[ ]000000 |||,||| xZxZxZlExZxZlxZxZxZlExZxZlEk jjiidefij −−=

This last definition is – for any fixed choice of the likelihood – consistent with the likelihood principle
(Leonard and Hsu 1999, Robert 1996) and independent of the measure underlying the likelihood. To
remove redundancy we use a simple idea now: Estimate the mean of the loglikehoods as good as
possible and then multiply the means to get an as good as possible estimate of the sum, which exploits
the information optimally and thus avoids double use of redundant information. An optimal weighting
scheme for the mean is given by the inverse of the covariance matrix and thus from generalised least

squares the weights λ  would be given by 1K αλ =  for some α , where ( )t1...11=1  denotes  a

vector containing ones only. Now a curious property of likehoods is that more variance means more
information and thus the mean should honor things with big variances proportional to it: S1K αλ ~ .
Furthermore we should multiply with some constant afterwards, because we are not really interested
in the mean, but in a sum. Looking at the special case of uncorrelated likelihoods, we see that 1=α
would be a good choice resulting in a formula S1K 1−=λ . This can be interpreted in as following:
More covariance means more joint information. And this redundant information means less
information in total and thus down weighting. On the other hand: More direct variance means more
information and this exactly counteracts to the down weighting. The 1  means taking a sum.

Clearly this motivation is extremly simplistic and more theory is needed here. However these more
advanced arguments need deep considerations on Fisher information theory to quantify the virtual and
the true information in likelihoods and a more developed theory of the connection of the likelihood
spaces to these information concepts. These arguments are not fully developed yet and would clearly
exceed the scope of this extended abstract. We leave it to a research paper to be published later.
However the results of the simplistic idea work well in simple test cases as shown in the next section.

6. Comparision with Simple Kriging

In  the  situation  of  simple  kriging  (Cressie,  1993)  with  a  Gaussian  random  field  the  conditional
distribution can be computed directly from the conditional expectation and the conditional variance. It
can be shown that the approximate solution given in section 3 gives the same result as the exact
solution in this case. The calculation goes as follows:
With a multivariate normal model:
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and individual ix  are given by (Cressie 1993, p. 110)
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Therefore the individual loglikelihoods have the form:

( ) ( ) constxcfxcxxxl iiiiiaii +−= −
0

1
02

1
0|

where the small a at the equal means equal up to an additive constant. The joint loglikelihood has the
form
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we can see by comparison of coefficients (and using the notation) ( )
ijiiiij cf 1−= δB ,  the  weights  are

given by the equation
cFB 1−=λ

On the other hand the conditional metric covariation is given by
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And thus BFBK =  and ( )
ijiiiij fc 12 −= δS  we can check whether the weights are equal in both

approaches by checking the equation cFB 1−=λ for S1C 1−=λ . We get: cFS1BK 1
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And thus the approximate likelihood approach yields the same result as the exact solution. The results
in the likelihood approach do not change when data is transformed and thus it will yield the exact
solution in any transformed Gaussian, i.e. trans-Gaussian (Cressie 1993, p.137) field too. However the
whole construction did not rely on a Gaussian assumption, just like kriging does not rely on the
Gaussian assumption. Clearly with non-(trans)-Gaussian fields the approximation of the conditional
likelihoods  will  not  be  perfect  anymore  and  we  will  lose  something,  as  we  lose  optimality  when
kriging is based on second order arguments only and not on a Gaussian assumption.

7. Conclusions

We present a first approximation to the calculation of probability distributions at unsampled locations
conditional on observed data by using linear combinations of log-likelihoods of the observations
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conditional on the value which is sought. Parallelisms may be drawn between our approach and
disjunctive kriging, regarding the optimal use of bivariate distributions. The approach is fully justified
when assuming a  Gaussian  random field  (or  a  transformation  of  it),  but  is  still  a  valid  approach  for
other models. However, its practical implementation in these cases still lacks methods and models to
handle the spatial covariance between the likelihoods at two locations conditionals on a third one.
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