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1. Introduction

Most-used Geostatistical techniques need the specification of a covariance structure, e.g. kriging and
simulation of uni- and multivariate random functions, where cross-covariance modelling is critical.
Covariance models must be positive definite matrix functions, which implies that any linear
combination of the observations will be attached a valid variance-covariance matrix, i.e. a positive
variance or a positive definite symmetric matrix. This rather complicated-to-test condition is simplified
by Bochner’s Theorem: under certain regularity conditions, the spectral representation of a covariance
function must be a positive definite matrix for every frequency (Cramèr, 1940; Bochner, 1959).

The spectral modelling of auto- and cross-covariance functions came to the geostatistical field through
Rehman (1995), who approximated the Fourier Transform (FT) of cross-variograms by truncated series of
Bessel or sinc functions. Details can be found in Yao and Journel (1998), who suggest as an alternative to
use the Fast FT (FFT) algorithm to validate experimental correlation tables computed by smoothing
classical experimental versions with kernel-like fans, which are finally re-scaled by independent estimates
of the covariance ( )C h

r

 to obtain a set of covariance lookup tables. But, in our opinion, this is not adequate
to treat covariances due to the strong discrete character of FFT inherited from time signals, regularly
sampled and with unknown continuity properties. The precision of FFT is therefore focused in the higher
part of the spectrum, linked to discontinuities (nugget effect, linear behavior at the origin), but precision in
the lower frequencies (hole effects, general shape) is poor. Increasing the resolution of a covariance
(denser lags) only increases the high frequencies, but does not yield a better characterization of the range
or hole effects (high periods) of the covariance function: to do so, we should increase the maximum lag
distance. Fig. 1 illustrates this contrast by showing the spectral density of a Gaussian and an exponential
covariance models, comparing the theoretical model and the computed FFT. The fit is good, but it is also
seen that most (~ 80%) of the nodes computed by FFT are identically zero. In other words, effort has been
spent in determining the energy of some frequencies previously known to be zero.

This knowledge comes from some standard properties of covariance functions, which make them
different from signals: whereas signals are assumed to be periodic outside the sampled range and
irregular or even discontinuous between the sampled nodes, covariance functions can be reasonably
assumed to be continuous, smooth, derivable almost everywhere and necessarily bounded. We propose
to use this extra information to constraint the frequency spectrum to investigate, shifting the focus
from the high-frequency to the low-frequency part of the spectrum. Then a numerical integration can
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be performed in this frequency domain to estimate the FT: we suggest a Monte Carlo method, due to
the connections between one-dimensional inverse FT and an expectation.

Fig. 1. Discrete correlogram and spectral density computed with FFT and with theoretical
formulae (Chilès and Delfiner, 1999), for a gaussian (black dots) and an exponential (red
diamonds) correlogram model, as a function of a dimensionless frequency ν = 2πaω.

Table 1  Correlogram models and their respective cumulative spectral densities, with some
dimensionless angular frequency intervals, according to the degree of lost information. Notation: a a

range parameter, t a period parameter, 2 a
t
πτ =  its dimensionless version, and the dimensionless

frequency ν = 2πaω. The intervals are symmetric, and the table shows only their upper bound.

model cumulative density 95% interval 99% interval

spherical (no analytical form) 7.90 22.12

exponential 1 1 arctan( )
2

ν
π

+ 12.71 31.82

gaussian
2

νϕ  
 
 

2.77 3.29

hole effect arctan( ) arctan( )
2

π ν τ ν τ
π

+ + + − (Fig. 2)

delayed exponential 1 1 arctan( )
2

ν
π

+ 12.71 31.82

Fig. 2. Upper bound for 95% (lower curve) and 99% (upper curve) symmetric intervals of
dimensionless frequency ν = 2πaω for hole effect models as a function of the dimensionless parameter

2 a
t
πτ = , with dampening range a, period t and angular frequency ω.
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2. Monte Carlo Modelling

To perfectly describe a correlation function ( )C h
r

, being ( )h
r

 a lag distance, we must know its spectral
density *( )f ω

ur

 in its whole domain. If we trim the spectral density, we incur in a loss of information
regarding the correlation:  the degree to which this lost information will significantly alter its shape
depends on the probability outside an interval of ω

ur .  Table  1  contains  the  spectral  distribution
functions for some correlation models and some exam-ples of dimensionless angular frequency
intervals needed to describe the correlogram with a small loss of information. Compare these intervals
and those forced by the FFT formalism (Fig. 1). By choosing a model the user has some control over
the final shape of the covariance function, e.g. its possible range, behavior at the origin or hole effects,
but the estimation procedure we propose is still non-parametric, since this choice only conditions the
interval of frequencies to explore. The whole covariance estimation procedure is summarized as
follows:

1. compute the experimental covariance at user- or data-defined lag distances, by using any
classical standard procedure, without smoothing; it is possible to use uneven spacing if this is
desired,

2. define the desired spectral frequency grid, by fixing maximum values of frequency (table 1) in
each direction, and number of nodes;

3. compute a numerical approximation to the spectral density associated with the experimental
covariance function; to do so, we suggest to follow (see step 6):

(a) draw , 1, 2, ,nh n N=
r

L  random lag distances from a uniform distribution inside the limits
of the computed covariance table,

(b) interpolate the value of the covariance °( )nC h
r

 for each nh
r

, by using any smooth
interpolator, e.g. a piece-wise linear spline (1D);

(c) for each frequency kω
ur

 in the user-defined spectral grid estimate the spectral density as
an  average  of  the  complex  exponentials  of  the  FT,  giving  to  each  one  a  weight
proportional to the interpolated covariance

°
°

1

( )*( ) (cos(2 , ) sin(2 , ));
N

n
k n k n k

n

C hf h i h
N

ω π ω π ω
−

≈ −∑
r

ur r ur r ur

notice that if °( )nC h
r

 is a matrix of auto- and cross-covariances, so will be the spectral
density *( )f ω

ur

;
4. at each frequency node kω

ur

 ensure the validity of the computed spectral density: in univariate
cases, this means that this density must be always positive, while in multivariate cases, the
spectral density matrix must be a positive semi-definite one; we suggest to compute the
singular value decomposition of the spectral density matrix, trim its negative eigenvalues to
zero, and recover a spectral density matrix by using the trimmed eigenvalues with the original
eigenvectors;

5. define an output grid for the lag distances needed, e.g. for kriging; usually, this lag output grid
will be much denser than the input lag grid of the first step;

6. compute a numerical approximation to the smoothed valid covariance associated with the
spectral density, by using a Monte Carlo procedure, which estimates the covariance as the
expectation of the FT with respect to the random ω

ur :
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(a) draw , 1, 2, ,n n Nω =
ur

L  random frequencies from a uniform distribution inside the limits of
the spectral grid;

(b) interpolate the value of the spectral density ° *( )f ω
ur

 for each nω
ur

, by using any smooth
interpolator, e.g. a piece-wise linear spline (in 1D applications);

(c) for each lag distance kh
r

 in the output lag grid, estimate the covariance as an average of
the  complex  exponentials  of  the  inverse  FT,  giving  to  each  one  a  weight  proportional  to
the interpolated spectral density

°

1

*( )( ) (cos(2 , ) sin(2 , ));
N

n
k k n k n

n

fC h h i h
N
ω π ω π ω

−

≈ +∑
ur

r r ur r ur

when estimating a correlation function, another possibility would be to use a strict Monte
Carlo method, by simulating values of  from its spectral density an directly averaging
the complex exponentials.

The suggested procedure still suffers from some problems in common with that of Yao and Journel
(1998): if the trimming represents an important amount of energy, the final estimate will have an
over-estimated nugget effect. However, this problem is milder in our approach, due to the lower
amount  of  high  frequencies  under  study.  Also,  we  could  avoid  the  separate  estimation  of  the
covariance at the origin, which in the FFT modelling allowed to scale the estimated correlation lookup
tables to covariance tables: our approach might model directly covariances, although it is not
recommended if trimming is strong.

Fig. 3. Series of simulated (dots) and predicted (continuous line) values: the upper figure
represents X1, and the lower X2.
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3. A Simulated Example

To show the goodness of the method here proposed, we simulated a vectorial stochastic process, with

stationary mean µ = (0,0), covariance function ( ) (1,1) exp( )
10
h

C h − ⋅ −  and cross-covariance

12

5
( ) 0.5 exp( )

10
h

C h
−

− ⋅ − . Simulation was done using LU decomposition method, at 500 equally-spaced

nodes. From them, 100 were considered as data (black dots in Fig. 3), and the rest were used for
cross-validation purposes. With the data set, an experimental covariance was computed (black dots,
Fig.  4,  where  the  real  covariance  is  also  represented  as  a  red  line),  and  we  conducted  the  proposed
algorithm on them. The final estimated covariance function is also represented in the same figure:
the real part in black, the imaginary part in blue (which should be zero, thus assessing the estimation
quality). Covariance was estimated at all nodes needed in kriging ordinarily the cross-validation data
set. Kriged values are shown in Fig. 3 (black line), and they are compared with the true values in Fig.
5. This last figure contains also the estimates of ordinary kriging using the true covariance model.
Although the fit of the estimations with the true values and with the estimates of a classical method is
good, one should notice that the values obtained with the smoothed covariance are less smooth than
expected: a rather erratic small-scale fluctuation is noticeable in Fig. 3, which may be related to the
residual fluctuations in the estimated covariance.

Fig. 4. Matrix of covariances of the simulated data set: true covariance (red line), estimated covariance (dots) and
smoothed version (black line for the real part, blue line for the imaginary part). Left column and upper row
correspond to X1 covariances, whereas right column and lower row show X2 covariances. Note the antisymmetric
character of the cross-correlation of (X1 , X2,) outside the diagonal.

4. Concluding Remarks

A relatively new way of modelling covariances and validating cross-covariance systems has been in
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discussion in the last years. The exising method relies on Fast FT, which has a strong discrete nature
inherited from signal characteristics. Instead, we propose to use numerical integration methods (e.g.
Monte Carlo integration), to focus the attention on narrower parts of the spectrum, those needed to
reproduce a covariance model. We show that this method allows to complement the (scarce)
information  provided  by  the  raw  data  by  some  characteristics  (pattern  of  behavior  at  the  origin,  an
approximation to the range and a general shape) loosely coming from a chosen model. A simulated
case example showed the possibilities of such a method to validate covariances for simple kriging,
although some noisy behaviour was observed in the predictions. This calls for a better way to smooth
the covariance estimates, apart from applying a validation method like this. Also, the method still
lacks a generalisation to spatial problems (typically, 2D and 3D applications).

Fig.  5.  Scatterplots  of  the  predicted  values,  compared  with  the  true  simulations  and  with  the
predictions obtained with the true covariance model.
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