
Nonlinear Kriging, potentialities and drawbacks 
 

K. G. van den Boogaart 
TU Bergakademie Freiberg, Germany; boogaart@grad.tu-freiberg.de 

 
Motivation 
 
Kriging is known to be the best linear prediction to conclude from observations of a random field at 
individual points to the values of the random field at other locations. When the random field is jointly 
Gaussian, simple kriging is also the best prediction (in the sense of mean squared error), since for joint 
normal distributions the linear prediction is equivalent to the conditional expectation. However in our 
days kriging goes far beyond the prediction of gaussian random fields with known mean and known 
covariance function from point measurements without any further information. Many specialized theories 
have been developed to overcome the limitations of simple kriging. 

• Unknown or instationary mean 
Ordinary kriging and IRFk theory replace optimality of the kriging predictior by conditional 
optimality to overcome unknown parameters in the distribution model. Alternatively one could 
apply Baysian Kriging. 

• Unknown covariance function 
Kriging is mostly based on estimated covariance functions or variograms and thus looses its 
optimality property towards near optimal solutions. The problem how precise the variogram 
must be estimated to make kriging superior to deterministic interpolators seems to stay without 
rigerous solution. 
The unknown variogram is again a problem of unknown parameters in the distribution model 
leading to loose of optimality. Baysian kriging based on normal distributions provides a solution 
here. An   alternative way would be the definition of a conditional optimality, as for unknown 
trend parameters. 
A general method of optimal prediction in case of unknown variogram would be desirable. 

• Additional knowledge: e.g. known linear differential equations 
Some processes in nature are governed by partial differential equations. Linear differential 
equations for the process correspond to conditions on the covariance function and the trend 
model (Boogaart, 2002) and are can be used e.g. in hydrology (Chiles and Delfiner 1999), 
deformation and gravity analysis. However most interesting differential equations are nonlinear 
and can only be handled approximately by linearization. 

• Non gaussian distributions are predicted best with nonlinear methods 
For non gaussian random fields the linear prediction is in general not optimal. Special 
generalisations of kriging to special nonlinear predictors, all based on transformations of the 
individual values have been proposed: lognormal kriging, indicator kriging, disjunctive kriging. 

• Kriging of functionals 
Often the quantity of interest is not the random function itself, but a functional such as 
blockmeans, gradients and deformation, exceeding of thresholds, total costs, connectivity or 
direction of water flow. For some of these specialized methods based on kriging of linear 
functionals, on linearization, on probability kriging or, on simulation methods.  

• Kriging based on functionals 
Sometimes only functionals of a random field can be observed: The plain is below the deeps of 
the drilling, the Cd-content is below detection limit, the slope, a potential difference in gravity 
and many more. A good interpolation method should make use of these indirect observations. 
kriging of linear functionals and its special cases such as gradient kriging allow the use of 
observed linear functionals. Special publications can be found on special nonlinear functionals 
such as indicators. 
 

Thus we started out from simple kriging and extended the theory to more and more sophisticated 
applications. Let us now ask the question the other way round: How can we calculate the optimal 
predictor for any general (i.e. linear or nonlinear) functional F0 of a random field Z(x) based on any set of 
observed functionals F1,..., Fn, when the distribution of the random field is given up to some parameters 
and what are the implication of a known general partial differential equations of the random field? This 
theory should be outlined here. The given mathematical foundation is by no means complete or general, 
since the used arguments do not exist in many cases due to the missing compactness of the corresponding 
operators. The precise domain of validity is to be established later. Further this should not be seen as a 



theory to be used for itself in full generality but as system to generate the specialisation most appropriate 
for the current application. Indeed most - if not all - of the known generalizations of kriging are indeed 
special cases of this new general framework. The presentation of the theory here may only be seen as a 
brief sketch without references or proofs. 
 
A new foundation: The moment generating functional  
 
The variogram describes the second order structure of Z and is therefore only useful to compute the 
variance of linear combinations. In this nonlinear theory we will replace the variogram (or covariance 
function) with a mathematical object containing all the information about all moments at once: 
The moment generating functional Z# of Z. The moment generating functional Z# is a distribution 
dependent nonlinear mapping of linear functionals L, replacing the increments of IRFk, to a real number 
and is defined as (cf. Rinne 1997): 

Z#(L) := E[ exp(LZ) ] 
It does not exist for all L just as the covariance function is meaningful only for special increments. Thus  
analog to generalized covariance functions we will define generalized moment generating functionals as 
equivalence classes of functionals only giving finite values for specific “increments” L. Strong 
stationarity of Z corresponds to translation invariance of Z#: 

Z#(Lh)=Z#(L) 
Where LhZ := Y(L(.-h)) is a translated functional. The name "moment generating functional" originates 
from the fact that the uncentered moments can be calculated from it taking derivatives of the functional 
and evaluating them in 0. 
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Nonlinear increments and its transforms 
 
With more effort the moment generating functional can be used to calculate the moments of nonlinear 
functionals g of Z. We define the moment transform g# of functionals g based on a Taylor series 
expansion of the functional g into multilinear operators Ai: 
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with functionals Ai multilinear in i components. Unfortunately a Taylor series expansion only exists for 
analytical operators. Analytical operators are transformed to 
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which is a linear differential operator which maps the moment generating functional of Z to the moment 
generating functionals of the nonlinear statistic gZ represented by g: 

(gZ)# = g#Z#, 
Thus the moment generating functional and thus the moments of gZ can be calculated from Z#. An 
analogues transformation G# can be defined for linear operators G. The only difference is that here the Ai 
are multilinear operators in i-variables rather then only functionals. Correspondingly we get: 

(GZ)#  = G#Z# 
The application of g# on the moment generating functional corresponds to the evaluation of the trend 
function  

E[ gZ ] = g#Z# |L=0 
Comparing the Taylor series we find the simple relation: 

(g1(Z)g2(Z))#  = g1
#g2

#Z# 
E[ g1(Z)g2(Z) ] = g1

#g2
#Z#|L=0 = g2

# g1
#Z#|L=0 

which corresponds to evaluation of the product moment E[ Z(g1),Z(g2) ] = c(g1,g2) in case of simple 
kriging (µ=0) for two locations (rather than functionals). Z# incorporates all moment informations at once. 
 



Nonlinear differential equations 
 
Let us assume that every realization of Z solves a (linear or nonlinear) differential equation  

0≡GZ  
with some analytical differential operator G. The moment generating function (GZ)# = G#Z# of the 
constant 0 is equivalent to 0 and thus the differential equation implies the constraint 

0## ≡ZG  
to the moment generating functional. This generalizes the restrictional effect of linear differential 
equations on the variogram and the trend (Boogaart, 2002): 
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An obviously the other way round, when (  holds we also have in 
distribution. Thus the implications of nonlinear differential equations can be fully reproduced by this 
presentation just as linear differential equations are by linear kriging. However the prediction will in 
general not solve the nonlinear differential equation. 
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Ansatz for nonlinear Kriging 
 
The general problem of nonlinear kriging can be formulated as follows: The random field Z is observed 
by an observation operator G = (g1,…,gn)t consisting of a set of (nonlinear) observation functionals 
g1,…,gn resulting in observations GZ = (g1Z,..,gnZ)t. The predictor (kriging weights) corresponds to an 
operator , which needs to by applied to GZ. The best predictor  is defined by the usual  expected 
mean squared error loose criterion: 

ĝ ĝ
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which can be found by the variation formulation 
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which simplifies to 
[ ] ][)(ˆ gZGZEGZxGZgE =  

This on the other hand shows up as a linear problem in the transformed formulation: 
#######ˆ ZGgZGGg =  

Where now  and thus by backtransformation  can be found by solving the linear operator equation 
within the image space of the 

#ĝ ĝ
# transform. This equation is analog to the simple kriging equation  

cC =λ  
with  corresponding to λ,   to C=(c(x#ĝ ### ZGG

### ZG
i,xj))ij and  to c. A central problem is to 

understand the meaning of  G . Thus the optimal predictor can more or less be found by solving a 
linear equation. However the equation is an operator equation and we need methods to find a numerical 
solution. 
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Prediction Error 
 
Like with linear kriging we can calculate the prediction error for our optimal predictor from the moment 
generating functional: 
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Weakly optimal predictors 
 
Linear differential equations have week solutions for test spaces and reduced candidate spaces. It is 
interesting to study these suboptimal solutions for some reasons: 

• It will be necessary to calculate the optimal predictor numerically, since we are most often not 
able to solve the nonlinear kriging equation analytically. 



• Linear kriging is special weak solution of the nonlinear kriging equation. Test functions 
corresponding to linear functionals and linear candidate spaces correspond to the linear kriging 
predictor. 

• We can restrict the problem to "simple to calculate" subclasses of   predictors (Such as 
polynomials, indicators, disjunctive transforms, ...), resulting in different types of nonlinear 
kriging.  

• And last but not least: When we use the moment generating function of an  estimated or inferred 
structure, we may want to disregard special properties of the structure which are unsure. Thus we 
want to reduce the usage of the structure to some of its functionals.  

 
 
Prediction with structure determination 
 
Introduction 
 
The central problem of kriging is that the structure represented by Z# is a-priori unknown und thus we can 
never give good predictors unless we have enough data to infer the true structure very well. However in 
realistic situations parts of the structure are always unknown and need to be inferred from the 
observations. Structural parameters such as the sill and the range correspond to unknown functionals of 
FZ#. There are two basic ideas to work around this problem: Baysian and classical. 
 
Baysian approach 
 
The more simple situation is having a Baysian prior to the structural parameters. Baysian formulation of 
interpolation with unknown structural parameters implies a prior on the structural parameters. We can use 
expectation of the momenten generating function under the prior as moment generating function of the 
double experiment randomly choosing the structural parameters first and then choosing a random 
structure. Thus the Baysian Problem can be handle like the standard problem with known structure and 
needs no further provisions and Baysian kriging is just a special case of nonlinear kriging. The Z# used is 
defined by the Z# expected under the prior distribution of the unknown model parameters.   
 
Classical approach: Disregarding unknown structures 
 
The other idea is to assume the structural parameters FZ# totally unknown. In this case we don't know 
some (nonlinear) functionals of the measure. However, when we know some (minimal) sufficient 
statistics s1,…,su for that parameters (which we normally do not observe), we just need to assume that we 
don't know anything about the distribution of these, because normally the unknown parameters allow any 
probability distribution for these and when we don't know anything about the distribution of these, we 
impose no knowledge about the parameters. For sure we can then not find a globally optimal solution 
without reducing our selves to test functions and candidate functions with moment transforms orthogonal 
to s1

#,…,su
#. The unbiasedness condition in ordinary kriging is a special case of this technique, since the 

candidate and test spaces are reduced to directions orthogonal to the mean. However a similar technique 
can be applied to unknown variogram parameters in case of  nonlinear kriging. 
 
Conclusions 
 
Nonlinear kriging yields a framework for many problems of kriging 

• Optimal prediction in case of unknown parameters means prediction disregarding special 
functionals of Z*. A special case is the IRFk theory. But the theory can also be applied to 
unknown variogram parameters. 

• Nonlinear kriging shows how to use and predict any functional of the random field and 
constructively shows which moments of the field need to be known, when estimated with given 
candidate and test spaces. 

• Nonlinear kriging provides the tools to introduce any physical law described by differential 
equations into a prediction problem.   

• Using the linear finite element basis as candidate and test spaces and boundary conditions as 
data, all necessary informations on Z# are provided by a linear partial differential equation 



resulting in the finite element method. Thus nonlinear kriging is a joint generalization of finite 
elements and kriging and provides the means to combine both methods in future applications.    

• Although always providing the optimal predictor, nonlinear kriging is to demanding for real 
applications, but special choices of candidate and test spaces provide many interesting special 
cases including most of the known generalizations of kriging. It can help to find the best 
generalization to be used in a specific application and serve as a framework to compare   
different types of kriging. 
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