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Since the domain of crystallographic orientations is three-dimensional and

spherical, insightful visualization of them or visualization of related probability

density functions requires (i) exploitation of the effect of a given orientation on

the crystallographic axes, (ii) consideration of spherical means of the orientation

probability density function, in particular with respect to one-dimensional

totally geodesic submanifolds, and (iii) application of projections from the two-

dimensional unit sphere S2 � IR3 onto the unit disk D � IR2. The familiar

crystallographic `pole ®gures' are actually mean values of the spherical Radon

R1 transform. The mathematical Radon R1 transform associates a real-valued

function f de®ned on a sphere with its mean values R1f along one-dimensional

circles with centre O, the origin of the coordinate system, and spanned by two

unit vectors. The family of views suggested here de®nes ! sections in terms of

simultaneous orientational relationships of two different crystal axes with two

different specimen directions, such that their superposition yields a user-

speci®ed pole probability density function. Thus, the spherical averaging and the

spherical projection onto the unit disk determine the distortion of the display.

Commonly, spherical projections preserving either volume or angle are

favoured. This rich family displays f completely, i.e. if f is given or can be

determined unambiguously, then it is uniquely represented by several subsets of

these views. A computer code enables the user to specify and control

interactively the display of linked views, which is comprehensible as the user

is in control of the display.

1. Introduction

A crystallographic orientation is the active rotation g 2 SO�3�
which maps a right-handed coordinate system KS ®xed to the

specimen onto another right-handed coordinate system KC
®xed to the crystal:

KC � gKS: �1�

It may be parameterized by three conventionally de®ned

Euler angles, e.g. g 2 G � SO�3�: g = g��; �; �, where the ®rst

rotation by � 2 �0; 2�� is about the zKS axis, the second by

� 2 �0; �� about the new y0 axis, and the third by  2 �0; 2��
about the new z00 axis of the specimen coordinate system KS .

Then ��; �� are the spherical coordinates of the direction z00 =

zKC with respect to KS (cf. Matthies et al., 1987). This sequence

of rotations results in the same orientation as the sequence of

the ®rst rotation by  2 �0; 2�� about the zKS axis, the second

by � 2 �0; �� about the (old) yKS axis, the third by � 2 �0; 2��
about the (old) zKS axis of the specimen coordinate system KS ,

as can be seen by multiple applications of conjugation of

rotations:

M��; z�M��; y�M�; z�
� M��; z�M��; y�Mÿ1��; z�|��������������������{z��������������������}

M��;�M��;z�y��

M��; z�M�; z�Mÿ1��; z�|��������������������{z��������������������}
M�;z�

� M��; z�
� M��; y0�M�; z�Mÿ1��; y0�|����������������������{z����������������������}

M�;�M��;y0�z��

M��; y0�M��; z�

� M�; z00�M��; y0�M��; z�:
�2�

Essentially, there exist 11 other ways to de®ne Euler angles,

e.g. Bunge's �'1;�; '2�, and they are all in use (Kuipers, 1999).

The coordinates of a unique direction denoted hKC with

respect to the crystallographic coordinate system KC = gKS
and rKS with respect to the specimen coordinate system KS are

related to each other by

hKC � gÿ1 rKS ; �3�

where gÿ1 is represented by the matrix
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It should be noted that the commonly applied convention in

texture analysis following the most in¯uential books on

texture analysis by Bunge (1969, 1982) is to ± in a strict

mathematical sense incorrectly ± refer to both the active

rotation g of coordinate systems gKS = KC and the passive

transformation g = gÿ1 of unit vectors hKC = gÿ1 rKS by the

unique symbol g. Since it is essential to work with (3) rather

than (1), formal consistency of the formulae given here with

respect to previous references could be maintained by iden-

tifying g = gÿ1, and vice versa.

Since the domain of crystallographic orientations is three-

dimensional and spherical, insightful visualization of them or

visualization of related probability density functions requires

(i) exploitation of the effect of a given orientation on several

crystallographic axes simultaneously, (ii) consideration of

spherical pole probability density functions augmented with

information concerning the orientational relationship of an

additional crystallographic and an additional specimen direc-

tion, and (iii) application of appropriate projections from the

two-dimensional unit sphere S2 � IR3 onto the unit disk

D � R2.

2. Motivation of x sections of the orientation space

Conventionally, the information conveyed by orientation data

or their orientation probability density function is visualized

by point plots or plots of contour lines of equal density in two-

dimensional sections of the orientation space along one of the

Euler angles, i.e. in sections orthogonal to a coordinate axis of

the Euler space, thought of as being spanned by three

orthogonal axes. Displayed in this fashion, plots of the

orientation space and its sections suffer from serious distor-

tions (cf. Kunze, 1991; Kocks et al., 1999); since distances and

angles are generally not preserved, the visual inspection,

especially the interpretation of local maxima, may be

misleading. More involved are pole-®gure-like plots of

orientation probability density functions in  sections (Wenk

& Kocks, 1987) of the Euler space along constant values of ,

and particularly in � sections (Helming et al., 1988; Matthies et

al., 1990a,b; Kunze, 1991) or � sections, respectively, which

display orientation probability density functions according to

the parametrization g = g��; �; �� of an orientation with � =

��� �=2 to avoid the effects of the singularity of the para-

metrization g��; �; � for � = 0, or analogously according to

the parametrization g = g��; �; � with � = ��ÿ �=2 to avoid

the effect of the � = � singularity of the parametrization

g��; �; �. � sections preserve and display equal-volume

portions of the orientation space, and present a good

compromise to preserve distances and angles. Like  sections,

they add up to the zKC -pole probability density plot, or the zKS -

inverse-pole probability density plot, but other axes or their

statistical distributions, respectively, are not visually inferred.

 sections exploit the fact that for arbitrary Euler angles

�; �, g��; �; � rotates the crystal direction h = zKC = �0; 0; 1�t

onto r = �cos� sin �; sin � sin �; cos ��t for each  2 �0; 2��,
i.e. g��; �; � zKC = r for each  2 �0; 2��, where  refers,

according to (2), to a rotation about z00 = g��; �; 0� zKC = r.

The rotation angle  is also the orientation distance of

g��; �; � and the reference orientation g��; �; 0� as

g��; �; � gÿ1��; �; 0� results in a rotation by  about r.

The idea to visualize orientation data and their probability

density function in sections of the orientation space is gener-

alized by the de®nition of the ! section in terms of a simul-

taneous visualization of orientational relationships of two

pairs of one crystallographic and one specimen direction each,

as initially introduced by Schaeben & Boogaart (2002, 2003).

More speci®cally, we generalize the idea of  sections for

arbitrary crystal directions h and an orientation distance

generally denoted ! given in terms of an additional crystal

direction h1 and an additional specimen direction v. For each

direction r = gh, the angle !�r� is the speci®c orientation

distance between the actual orientation g mapping h onto r

and a reference orientation g0 mapping both h onto r and

simultaneously h1 onto v. Since an orientation distance is

always a rotation angle of some rotation, we have character-

ized this rotation as a rotation about r = gh.

3. Individual crystallographic orientation
measurements

The data set consists of crystallographic orientations

gi 2 SO�3�, i = 1, . . . , n, where n denotes the total number of

orientation measurements, i.e. the sample size. The corre-
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sponding h-pole point plot displays the projection of the unit

vectors gihk = rik
2 S2, i = 1, . . . , n, k = 1, . . . , m(h), onto the

unit disk D, where m(h) denotes the crystallographic multi-

plicity of the crystal direction h due to crystallographic

symmetry. Thus, an orientation gi is displayed at the location ri

= gih and at all locations corresponding to crystal-symmetry-

equivalent directions hk of h when appropriately projected

onto the unit disk. Due to crystal geometry, this representation

of gi by the points rik
= gihk is in general complete, if the

crystallographic multiplicity m(h) > 1. It is incomplete in the

case of triclinic symmetry (`no symmetry'), for c-pole point

plots in the case of non-cubic symmetries, or for pole prob-

ability density plots, which display integral (`summary')

information about the orientations, blurring the crystal

geometrical relationships.

Neglecting crystallographic symmetry and dropping the

subscript k momentarily, the existence of a point ri in the h-

pole point plot provides the information that there is at least

one orientation gi in the sample with gih = ri. However, the two

directions, i.e. the crystallographic direction h and the

specimen direction ri, do not uniquely de®ne an orientation. In

fact, the set G�h; ri� � SO�3� of rotations with gh = ri consti-

tutes a circle in S3 � IR4 with centre O if the orientations are

represented by quaternions (Schaeben, 1996). The elements of

G�h; ri� can be decomposed into a sequence of three succes-

sive rotations in different ways, e.g. by

g h � g03 g
0
2 g01 h|{z}

z

� g03 g02 z|{z}
z

� g03 z � ri;

where g03 z = ri and g01 h = z are speci®ed rotations, and g02z = z is

any rotation about z by a variable angle (cf. Matthies et al.,

1987), or as well by

g h � g3 g2 g1 h|{z}
h

� g3 g2 h|{z}
z

� g3 z � ri;

and, equivalently,

g h � g4 g3 g2 h|{z}
z

� g4 g3 z|{z}
ri

� g4 ri � ri; �4�

where g3 z = ri and g2 h = z are speci®ed rotations

g3�'; #� g2��; �� = : g0��; �; '; #� such that g3 g2 h = g0 h = r,

and g1 h = h is any rotation about h by a variable angle of

rotation, and g4 ri = ri is any rotation about ri by a variable

angle of rotation. Accordingly, the set G�h; r� =

{g 2 SO�3� j g h = r} of all rotations with g h = r may be

represented by matrices M�g; h; r� 2 SO�3� in terms of Euler

angles as

M�g; h; r� � M�'; #; 0�|������{z������}
z 7! r

M�0; 0; !�|������{z������}
z 7! z

Mÿ1��; �; 0�|��������{z��������}
h 7! z

�5�

�M�'; #; 0�M�!; z�Mt��; �; 0� �6�
with

Mt��; �; 0� �
cos� cos� sin � cos � ÿ sin �
ÿ sin � cos� 0

cos� sin � sin � sin � cos �

0
@

1
A;

where �; � are the spherical coordinates of h,

M�'; #; 0� �
cos ' cos# ÿ sin ' cos ' sin#
sin ' cos# cos' sin ' sin#
ÿ sin# 0 cos#

0
@

1
A;

where '; # are the spherical coordinates of r, and

M�0; 0; !� �
cos! ÿ sin! 0

sin! cos! 0

0 0 1

0
@

1
A � M�!; z�:

Since it holds that

M�!; z� �Mt�'; #; 0�M
�
!;M�'; #; 0�zM�'; #; 0��

�Mt��; �; 0�M
�
!;M��; �; 0�z�M��; �; 0�; �7�

then

M�g; h; r� �M
�
!;M�'; #; 0�z�M�'; #; 0�Mt��; �; 0�

�M�!; r�M�'; #; 0�Mt��; �; 0�
�M�!; r�M��; �; '; #�; �8�

where M��; �; '; #� is a rotation matrix speci®ed by the four

involved spherical coordinates. Obviously, any matrix M0 with

M0h = r will also suf®ce. Thus, ! 2 �0; 2�� provides a degree of

freedom, of choice, which will be of importance later on.

Analogously, of course,

M�g; h; r� �M�'; #; 0�Mt��; �; 0�M�!; h�
�M��; �; '; #�M�!; h�: �9�

Thus, for a data set fgi 2 SO�3�g with gi h = ri, the elements of

G�h; ri� may be thought of as differing by an initial rotation

about h, or a ®nal rotation about ri, respectively, by an arbi-

trary angle ! 2 �0; 2��. The actual ! can be determined when

the effect of gi on another crystallographic direction h1 is

considered by additionally plotting in each point ri = gi h the

projection of gi h1 onto the tangential plane at ri. Since an

orientation can be uniquely determined by two pairs of

directions, each of which consists of one crystallographic and

one specimen direction (cf. Altmann, 1986; Bukharova, 1996),

the orientation is even more instructively uniquely determined

if the angle ! relates the crystallographic direction h1, strictly

speaking gi h1, to another specimen direction v provided that

v 6� ri, i.e. if ! is the angle enclosed by the orthogonal

projection �gi h1�T�ri� of gi h1 and the orthogonal projection

�v�T�ri� of a second user-de®ned specimen direction v onto the

tangential plane at ri when looking at the tangential plane

from outside the pole sphere, i.e. for v 6� ri, by

!�ri� :� ���v�T�ri�; �gi h1�T�ri�� �10�
with

�v�T�ri� :� vÿ �v � ri�ri

and

�gi h1�T�ri� :� gi h1 ÿ �gi h1 � ri� ri;

for which
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�gi h1�T�ri� � gi h1 ÿ �gi h1 � gi h� gi h

� gi h1 ÿ �h1 � h� gi h

� gi

�
h1 ÿ �h1 � h� h

�
holds.

Then

cos!�ri� �
�v�T�ri� � �gi h1�T�ri�
k�v�T�ri�k k�gi h1�T�ri�k

� �v�T�ri� � �gi h1�T�ri�
�1 ÿ �v � ri�2�1=2 �1 ÿ �h1 � h�2�1=2

; �11�

where !�ri� 2 �0; �� if �v�T�ri� � �gi h1�T�ri� is parallel to ri,

and ! 2 ��; 2�� if �v�T�ri� � �gi h1�T�ri� is antiparallel to ri

(see Figs. 1 and 2a). Computationally, we use the form

!�ri� � atan 2
��v�T�ri� � ��gi h1�T�ri� � ri�; �v�T�ri� � �gi h1�T�ri�

	
;

where atan 2�x; y� is a function of two arguments giving the

angle of the complex number x � iy, available in most

computer languages.

Subsequently, we shall omit the argument ri of !. We have

chosen to denote our type of sections as ! sections, as !
actually refers to an orientation distance. In greater detail, for

each location r of any h-pole ®gure, ! is the speci®c orienta-

tion distance between the actual orientation mapping h onto r

and a reference orientation mapping both h onto r and

simultaneously h1 onto v. Since an orientation distance is

always also a rotation angle of some rotation, we have speci-

®ed this rotation as a rotation about r through the angle !.

Thus, the h-pole point plot

Pn�g; h; r� �
Xn

i�1

Ifgih�rg�g� �12�

can be spread into ! sections de®ned as

Pn�g; h; r; h1; v; !� �
Xn

i�1

Ifgih�r and ���v�T �r�;�gi h1�T �r���!g�g�; �13�

the superposition of which with respect to ! is the h-pole point

plot.

For the purpose of visualization, a tolerance measure �!
has to be applied, and the ! sections actually displayed are

de®ned as indicators of G�h; r; h1; v; !;�!� � G�h; r� by

Pn�g; h; r; h1; v; !;�!� �
Xn

i�1

IG�h;r;h1;v;!;�!��g�;

with

G�h; r;h1; v; !;�!� :� �
g 2 SO�3� j gh � r and

���v�T�r�; �gih1�T�r�� 2 �!ÿ�!;!��!�	 �14�
It should be noted that the set G�h; r; h1; v; !; 0� determines a

unique orientation.

Thus, the orientations gi displayed as points ri = gi h

augmented with gi h1 orthogonally projected onto the

tangential plane at ri are sorted according to ! as de®ned in

equation (11). Using the same projection onto the unit disk as

for the h-pole points results in plots of ! sections of the

orientation space with the same properties as the h-pole point

plot.

4. Integral measurements of diffraction pole probability
density functions

4.1. Special case

Obviously,

g��; �; �
0

0

1

0
@

1
A
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�
cos� sin �
sin � sin �

cos �

0
@

1
A
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2
64

3
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KC

�: h0KC

for all � 2 �0; 2��:
Let f : SO�3� 7! IR1 denote an orientation probability density

function f 2 L1
�
SO�3��. Then,

1

2�

Z
�0;2��

f
�
g��; �; �� d � 1

2�

Z
fg2SO�3�jg e3�rg

f �g� dg

� �R1f ��zKC ; rKS �; �15�
which is the spherical probability density function of the

crystallographic direction zKC , and

1

2�

Z
�0;2��

f
�
g��; �; �� d� � 1

2�

Z
fg2SO�3�jg h0�e3g

f �g� dg

� �R1f ��h0KC ; zKS �; �16�
or

1

2�

Z
�0;2��

f
�
g��; �; �ÿ �� d� � �R1f ��hKC ; zKS �;

respectively, which is the spherical probability density function

of the specimen direction zKS . Analogous relations hold for

differently de®ned Euler angles.

In these instances, averaging may be thought of as providing

a projection of f : S2 � �0; 2�� 7! IR1
� onto S2, and eventually

onto the unit disk D � IR2 when some projection S2 7!D is

applied. If f ��; �; � is displayed in plane  sections (of ®xed

), then their superposition is the spherical probability density

function of the crystallographic zKC direction. If the same

projection onto the unit disk is used for  sections and for the

spherical probability density function �R1f ��zKC ; rKS �, then

they have the same properties in common.

Analogously, if f is displayed in � sections of ®xed �, then

their superposition is the spherical probability density func-

tion of the specimen zKS direction.

Let i :� 2�i=p, i = 0, . . . , p, denote a partition of �0; 2��
into equidistant intervals �iÿ1; i� with � = i ÿ iÿ1, i = 1,

. . . , p, and 0 = 0 = p mod 2�. Instead of displaying f ��; �; i�,
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i = 1, . . . , n, a smoothed  section can be de®ned in this

instance as

�ÿif ��zKC ; rKS � �
1

2�

Z
�iÿ1

2�;i�1
2��

f
�
g��; �; �� d �17�

with

�R1f ��zKC ; rKS � �
Xp

i�1

�ÿif ��zKC ; rKS �: �18�

Since the elements of G�zKC ; ri� differ by an initial rotation

about zKC , or a ®nal rotation about ri, respectively, by an angle

 2 �0; 2��, the physical signi®cance of  is that it is very

closely related to the angle ! between the orthogonal

projection of g xKC and the orthogonal projection of the

specimen direction zKS onto the tangential plane at rKS = g zKC .

On several occasions when  sections were introduced, this

relationship was neither explicitly recognized nor particularly

appreciated (cf. Kocks et al., 1999). In fact, by the very de®-

nition of Euler angles, it holds for  = 0 that

g��; �; � xKC �
cos� cos�
sin � cos �
ÿ sin �

0
@

1
A �

cos � sin��=2 � ��
sin � sin��=2 � ��

cos��=2 � ��

2
4

3
5:

Thus, the three directions g xKC, zKS and g zKC belong to one

plane orthogonal to the tangential plane at rKS = g zKC . The

sign of the z components of the former two directions indi-

cates that the angle ! between their orthogonal projections is

�. Corresponding to  = �, the angle ! between the projec-

tions of g �ÿxKC � and zKS onto the plane vanishes.

For arbitrary , this can be seen by elementary arguments as

follows. With v = zKS and h1 = xKC ,
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Figure 2
Top view of the tangential plane with the orthogonal projection of the crystal direction h1 = (100)t, represented by gi h1 with respect to the specimen
coordinate system KS , and its crystal-symmetry equivalents, and the orthogonal projection of the specimen direction v, enclosing the angle !. [Part (a)
courtesy of Heiko Kost, KPMG InfoDesign, SaarbruÈ cken, Germany.]

Figure 1
(111)-pole sphere displaying (111)t = h = gÿ1

i ri, and the associated tangential plane with the orthogonal projection of the crystal direction h1 = (100)t,
represented by gi h1 with respect to the specimen coordinate system KS , and its crystal-symmetry equivalents, and the orthogonal projection of the
specimen direction v, enclosing the angle !. (Figures courtesy of Heiko Kost, Anidesk Digitalvisualization, Webenheim, Germany.)
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v1 �
zKS ÿ �zKS � r� r
kzKS ÿ �zKS � r� rk
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�
cos� cos� cos  ÿ sin � sin 

sin � cos � cos  � cos � sin 

ÿ sin � cos 

0
B@

1
CA:

Thus,

v1 � v2 � cos��ÿ �;
from which the angle ! between the orthogonal projection of

g xKC , i.e. v2, being anticlockwise rotated by  about r, and v1,

which is the orthogonally projected zKS , is interpreted as

! � ��v2; v1� � �ÿ 

when v2, v1 and r are thought of as a right-handed system.

4.2. General case

In mathematical tomography, the transform that assigns to a

function, de®ned on a d-dimensional manifold, its mean values

with respect to the family of d0-dimensional submanifolds, with

1 � d0 � d ÿ 1, is referred to as a d0-plane transform or Radon

Rd0 transform. If d0 = 1, R1 is sometimes explicitly called the

X-ray transform; if d0 = d ÿ 1, it is referred to as the Radon

transform R. For d = 2, the two cases coincide. However, the

term `spherical X-ray transform' is not used here to avoid

confusion with the spherical crystallographic X-ray transform

to be properly de®ned below. It is emphasized that in either

case the term `X-ray transform' does not refer to the actual

radiation, which could be X-ray, , neutron or synchrotron

radiation. In the mathematical sense, the term `spherical

crystallographic X-ray transform' will generally apply to

texture analysis and is used by us (cf. Cerejeiras et al., 2002).

The origins of spherical mathematical tomography date back

to the pioneering papers by Funk (1913, 1916), while mathe-

matical tomography in a Euclidean setting appeared later with

the classic paper by Radon (1917).

Generally, the spherical Radon transform R1 associating a

function R1f : �S2 � S2� 7! IR1
� with an orientation prob-

ability density function f : SO�3� 7! IR1
� is de®ned as

(Helgason, 1959; Bunge, 1969; Schaeben et al., 2001)

�R1f ��h; r� :� 1

2�

Z
fg2SO�3�jg h�rg

f �g� dg � 1

2�

Z
G�h;r�

f �g� dg: �19�

The general axes probability density function associated with

an orientation probability density function f is de®ned as

�Af ��h; r� � 1

2

h
�Rf ��h; r� � �Rf ��ÿh; r�

i
:

�Af � is also referred to as the bi-axial probability density

function.

The basic crystallographic X-ray transform, i.e. the pole

probability density function, associated with the crystal form

H of an orientation probability density function f , is provided

by mean values of R1f ,

�X f ��h; r� � 1

2 card �H�
X
h2H

�Rf ��h; r� � �Rf ��ÿh; r�� �
:

Considering h as a parameter rather than as a variable, �X f �
is usually called the `h-pole probability density function';

considering r as a parameter, it is usually called the `inverse

r-pole probability density function'.

Analogously to the special case of �R1f ��zKC ; rKS �, or

�X f ��zKC ; rKS �, respectively, any h-pole probability density plot

can be spread into ! sections, now de®ned with appropriate

additional directions h1 and v as

�
f ��h; r; h1; v; !;�!�

� 1

2

1

2�

Z
G�h;r;h1;v;!;�!�

�
Z

G�ÿh;r;h1;v;!;�!�

2
64

3
75f �g� dg

8><
>:

9>=
>;;
�20�

with G�h; r; h1; v; !;�!� as de®ned in equation (14).

Referring to the quaternionic notation (cf. Schaeben et al.,

2001; Cerejeiras et al., 2002), the Radon R1 transform may be

rewritten as

�R1f ��h; r� � 1

2�

Z
�0;2��

f
�
q�t�� dt; �21�

where q(t) varies along the circle of all quaternions with h =

q�rq as t varies in �0; 2��. This circle is properly de®ned by

C�q1; q2� � fq�t� 2 S3 j q�t� � q1 cos t � q2 sin t; t 2 �0; 2��g
�22�

with

q1 �
1

k1 ÿ rhk �1 ÿ rh� � cos
�

2
� h� r

k h� r k sin
�

2

and

q2 �
1

kh � rk �h � r� � 0 � h� r

k h� r k ;

where

k1 ÿ rhk � �2�1 � cos ���1=2

and

kh � rk � 2 cos
�

2
;
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in which cos � = h � r. Obviously, k1 ÿ rhk = kh � rk. Thus, in

greater detail,

Sc q�t� � cos
!�t�

2
� cos

�

2
cos t �23�

and

Vec q�t� � sin
!�t�

2

q�t�
kq�t�k

� sin
!�t�

2

h� r

sin �
cos t � h� r

2 cos��=2� sin t

� �

� 1

2 cos ��=2� �h� r� cos t � �h� r� sin t� �: �24�

Thus, the angles of rotations of the circle (22) vary according

to equation (23), and the axes of rotations vary in the plane

spanned by the axes of the rotations represented by q1 and q2,

i.e. by

n1 �
h� r

sin �
and n2 �

h� r

2 cos��=2� ;

while t varies in �0; 2��. The plane of the axes of rotations of

the circle [equation (22)] is uniquely given by its unit normal

n1 � n2 �
h� r

sin �

� �
� h� r

2 cos��=2�
� �

� rÿ h

2 sin��=2� :

It should be noted that

r q1 � q1 h � q2:

De®ning now the quaternions

h�t� � cos t � h sin t; t 2 �0; 2��
and

r�t� � cos t � r sin t; t 2 �0; 2��;
representing rotations about h or r, respectively, by an arbi-

trary angle t 2 �0; 2��, it holds that

C�q1; q2� � fq0 h�t� j t 2 �0; 2��g �25�
and also

C�q1; q2� � r�t� q0 j t 2 �0; 2��
for any q0 2 S3 with

q0 h q�0 � r; �26�
i.e. for any q0 2 C�q1; q2�. In particular, with the choice q0 = q1

it holds that

q�t� � r�t� q1; t 2 �0; 2��;
as, obviously, q0 = q1, and q��=2� = q1 h��=2� = q1 h = q2. Of

course, the decomposition [equation (25)] of elements of

C�q1; q2� corresponds to the decomposition [equation (8)] of

matrices. Since condition (26) does not uniquely determine q0,

there is a freedom of choice which could be utilized to choose

q0 such that

q0 h q�0 � r and q0 h1 q�0 � v; �27�
where the second part would ensure that

���v�T�r�; �g0 h1�T�r�� � 0:

Algebraically, q0 is given as the solution of the system of the

two equations

q0 hÿ r q0 � 0 �28�
and

q0 h1 ÿ v q0 � 0; �29�
subject to

h � h1 � r � v: �30�
By geometrical reasoning (Meister, 1997; Meister & Schaeben,

2004), the solution is given as follows. The axis n0 of the

rotation q0 is given by the intersection of the two planes of

rotation axes corresponding to circle (28) and circle (29),

respectively. The intersection of two planes is provided by the

vector product of their normals:

n0 �
h� r

k h� r k
� �

� h� r

k h� r k
� �� �

� h1 � v

k h1 � v k
� �

� h1 � v

k h1 � vk
� �� �

:

The angle !0 of the rotation q0 is provided by

tan
!0

2
� sin �

sin ��cos �� 1� ;

or equivalently by

cos!0 �
�n0 � r�t �n0 � h�
k n0 � r k k n0 � h k ;

where � denotes the angle between the axis n0 and the plane

spanned by h and r (cf. Meister, 1997, pp. 59±60).

However, for varying r and ®xed h, h1 and v, the constraint

(30) is much too restrictive because it can usually not be

satis®ed. Therefore, the criterion (27) to choose q0 is relaxed

to

q0 h q�0 � r and �q0 h1 q�0�T�r� � �v�T�r�: �31�
For an arbitrary but ®xed q 2 C�q1; q2�, it holds that

r�t� q h q� r��t� � r

and

�r�t� q h1 q� r��t��T�r� � r�t� q h1 q� r��t� ÿ �h1 � h� r
� r�t� q h1 q� r��t� ÿ r�t� �h1 � h� r r��t�
� r�t� �qh1 q��T�r� r��t�

for all t 2 �0; 2��. Choosing

t0 :� arccos��qh1q��T�r� � �v�T�r��;
the second part of equation (31) is satis®ed for q0 : = r�t0�q.

To retrieve the Euler angles ��0; �0; 0� parametrizing the

rotation represented by q0 requires the evaluation of r�t0� q

and the application of the formula given, for example, by

Altmann (1986).

Eventually, the corresponding ! section may be rewritten as
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�
f ��h; r; h1; v; !;�!� � 1

2

Z
�!ÿ�!; !��!�

f
�
r�t� q0

�
dt �32�

if now the orthogonal projections �g h1�T�r�, �v�T�r� and r are

thought of as a right-handed coordinate system.

In particular, the set of orientations G�h; r; h1; v; !; 0�
contains a single orientation g 2 G, and ! sections are reduced

to displays of the orientation probability density function f �g�
at the corresponding point of the h-pole point plot using

contour-level lines and/or shaded iso-planes.

When highlighting is to be applied to display an orientation

probability density function, a display of the h-pole density of

a selected set of orientations in a view already displaying the

h-pole density of all orientations is required. A set of orien-

tations (which is now an in®nite set) is selected in one view of

orientations with speci®c pole directions; the other views will

display which specimen directions are preferred by other

crystallographic directions for that set. The conditional density

h given that g is in the selected set provides the required

information. The idea is to use contouring and to display iso-

planes of the two densities with two totally different colour

scales. The unselected density is displayed with a grey scale.

The conditional density of the selected set is displayed in a

coloured scale. Thus the two sets can easily be distinguished.

At every point of the pole density plot, the larger density is

displayed. Optionally, one of the displays may be switched off

or the contour lines may be added on top of the other iso-

planes, which allows a numerical comparison of two pole

densities.

5. General definition of x sections of the orientation
space

An ! section of the orientation space is de®ned in terms of the

following three parameters.

(i) A parameter g0 de®ning the orientation of the specimen

coordinate system KS with respect to some external coordi-

nate system K.

(ii) A crystallographic direction h characterizing the pole

point or pole probability density plot, which is the super-

position of all sections. An orientation g is initially incom-

pletely displayed at location r = g h and at all locations

corresponding to crystal-symmety-equivalent directions of h.

(iii) A second crystallographic direction h1, not parallel to h,

a specimen direction v, not parallel to r, an angle ! 2 �0; 2��,
and an angular tolerance �!. An orientation is actually

displayed if and only if the angle of h1 and v, both orthogonally

projected onto the tangential plane of the h-pole sphere at r0,

is in �!ÿ�!; !��!�, i.e.

���v�T�r�; �g h1�T�r�� 2 �!��!; !ÿ�!�:

Operationally, an ! section of the orientation space is

de®ned for integral measurements by

�
f ��h; r; h1; v; !;�!� � 1

2

Z
�!ÿ�!;!��!�

f
�
r�t� q0

�
dt

� 1

2

Z
�!ÿ�!;!��!�

f
�
g�$; r� g0

�
d$;

and for individual measurements by

Pn�g; h; r; h1; v; !;�!� �
Xn

i�1

Ifg0g�!;h� j!2�!ÿ�!;!��!�g�g�;

with the unit quaternion q0 2 S3 representing the rotation g0

such that q0 h q�0 = r and �q0 h1 q�0�T�r� = q0�h1�T�r�q�0 = �v�T�r�,
where h; r is a pair comprising a crystallographic direction and

a specimen direction, h1 is an additional crystallographic

direction, and v is an additional specimen direction, which are

all presumed to be given, i.e. they have to be speci®ed by the

user, as have ! and �!.

5.1. x sections and crystal symmetry

Considering crystal symmetry is straightforward. Every

crystal is displayed in each of its crystallographic equivalent

orientations throughout the sections, i.e. a speci®ed crystal

direction h, and all its symmetry equivalents gCh are plotted at

the locations rCi = gigCh provided by the orientation gi.

It should be noted that the joint symmetry of the pair �h; h1�
is in general different from the symmetry of h and h1 indivi-

dually. Thus it matters which representatives of the sets of

equivalents of h and h1 we choose because different repre-

sentatives can lead to different equivalance classes of pairs

�h; h1� and eventually to apparently different ! sections. As an

example, we consider the simple case of trigonal symmetry 3, h

= a = �2�1�10� and h1 = m = �01�10�. These two planes enclose an

angle of �=2, which is preserved by crystal symmetry, leading

to three equivalent pairs � �2�1�10�; �01�10� �, � ��12�10�; ��1010� � and

� ��1�120�; �1�100� �. However, choosing instead ��1010� as repre-

sentative of the crystal plane h1 leads to a constant angle of

5�=6 and to three different pairs, � �2�1�10�; ��1010� �,
� ��12�10�; �1�100� � and � ��1�120�; �01�10� �. The orthogonal projec-

tions of h1 of these pairs onto the tangential plane at gih differ

by an angle of � from the projections of h1 of the ®rst three

pairs. Thus, the ! sections differ by a rotation through � for

this example.

The three essentially different sets of pairs given by h = a1;2;3

and h1 = m1;2;3 are displayed in Fig 2(b).

In summary, without any additional provision, ! sections

distinguish the direction h1, which makes an angle of �=2 with

h, from its equivalents, which make angles of 5�=6 and 3�=2,

respectively. Although these directions are physically

equivalent they can be distinguished by their angle with the

sample direction r of h, which is given by the location in the

pole ®gure.

As an interesting consequence, whenever h is an n-fold

(rotation or rotation-inversion) axis, we have n equivalent

pairs �h; h1� with the same representative of h and thus with

the same sample direction r. Therefore the ! sections for
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! 2 �0; 2�=n� are repeated n times for ! 2 �0; 2��, and it is

thus suf®cient to plot the ! sections for ! 2 �0; 2�=n� only.

6. Properties of x sections

The essential properties of ! sections may be listed as follows.

(a) ! sections preserve volume, respectively area, if equal-

area projection of the pole sphere on the unit disk is applied.

(b) The direction of any given axis with respect to the

reference frame is geometrically visible.

(c) The de®ning parameters have a simple geometrical

interpretation.

(d) The user can choose the most informative sections in a

fast and interactive way.

(e) ! sections add up to a user-speci®ed pole probability

density function.

( f) The set of sections visualizes the complete information

of the orientation probability density function.

Dynamically linked views of ! sections and their super-

position will provide easy-to-read and instructive displays of

the orientation data, their probability density function and

corresponding pole probability density functions. In this way,

! sections can be instrumental for exploratory data analysis

like `how does a given crystal direction h1 relate with a given

specimen direction v, e.g. second principal stress direction?'.

If ! = 0, then all orientations are actually displayed for

which h1 is perfectly aligned with v and h coincides with the

direction r displayed in the h-pole point plot. If ! = �/2 or ! =

�, then all orientations are displayed for which h1 is largely

misaligned with v and h coincides with the direction r

displayed in the h-pole point plot.

Visualizing the angle ! in a circular display and continu-

ously varying ! along the circle �0; 2��, and keeping v and h1

®xed, displays continuous sections of the orientation space,

each displayed with equal area and in the same amount of

computer processing time.

The view is complete in the sense that two different data

sets are not displayed in the same way. The superposition of all

sections is the h-pole point or pole density plot.

Instead of varying !, it could be ®xed, and either v or h1 can

be varied. For ®xed ! = 0, or ! = �/2, respectively, and ®xed h1,

varying v over the whole pole sphere corresponds to exploring

`where is h1 headed to?'. The answer is provided by the most

dense clusters of orientations. As before, the sections sum to

the h-pole point plot and display the entire orientation space,

each with equal area and in the same amount of computer

time. The view is complete in the sense that two different data

sets are not displayed in the same way. For every set of

parameters with ! 2 f0; �=2; �; 3�=2g the user can easily infer

the h1 direction of every displayed orientation due to its

simple relationship with respect to the direction v.

Exchanging the roles of v and h1 allows exploration of the

data according to `which crystallographic direction heads to

v?'. This sectioning has the same properties as the previous

one.

It is not recommended to vary h and keep all other para-

meters de®ning ! sections ®xed. Varying h has totally different

effects; the corresponding sections do not sum to pole point or

pole density plots, but to a uniform distribution instead. They

do not display the entire orientation space, neither in equal

area nor in the same time, and the view is not complete.

A computer program allows the user to change the para-

meters interactively by a single mouse click or drag, and

displays the parameters of the plot within the plot. This

behaviour is important since it allows the user to explore the

data by changing the projections and sections rapidly in a well

controlled way and with minimum eye movement. The

approach is driven by actively displaying speci®c regions of the

orientation space.

When, by particular choice of h1 = xKC and v = zKS , !
sections are used to display ordinary  sections, they suffer of

course from the same defect as described by Helming et al.

(1988) that similar orientations are visualized in different 
sections. This defect was actually visualized in the (100)-pole

®gure of a central von Mises±Fisher orientation probability

density function with centre g0 = (0,0,0) and halfwidth of �/12

in the case of cubic crystal symmetry. It was explained by the

singularity of the representation of orientations in terms of

Euler angles at � = 0 and � = �, respectively. If ��; �; � =

��; 0; 2� ÿ ��, 2� = � + , then orientations with ®xed � but

varying � will be plotted at different locations of the pole

sphere, even though they represent essentially the same

orientation and cannot be distinguished. Orientations with

®xed � and varying � will be plotted at the same location, but

can be distinguished. In  sections, they can be distinguished

by the angle ! = 2� ÿ � included by zKS and g xKC when

orthogonally projected onto the tangential plane. In the case

of the example of Helming et al. (1988), the orientations are

largely concentrated around g0 = (0,0,0). Therefore, the

directions g xKC are largely concentrated around xKS . There-

fore, the angle included by zKS and g xKC when orthogonally

projected onto the tangential plane at the pole point with

spherical coordinates ��; "� with small " � 0, is largely

concentrated around �. Thus, the defect of the  sections may

now be understood as the effect of small � rotations in terms

of the new interpretation of  sections.

Thus, the same effect occurs in any h-pole ®gure whenever

the direction v is chosen such that v = g0 h.

Instead of introducing � sections (Helming et al., 1988;

Matthies et al., 1990a,b) as a remedy, we suggest here to

proceed from  to ! sections by choosing just a different

specimen direction v with a suf®ciently large distance of g0 h.

Moreover, � sections can be interpreted as ! sections with a

varying specimen direction v, which must actually be chosen as

v = M�ÿ�; r� zKS , because then it holds that

!ÿ � � �ÿ  ÿ � � �ÿ 2�:

6.1. Visualizing orientations with linked views

An alternative and complementary approach to visualize

the information conveyed by rotation/orientation data of

crystal grains in pole point plots is provided by highlighting in
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dynamically linked views (Theus, 1996; Thierney, 1991;

Velleman, 1997), which belongs to the realm of exploratory

data analysis. The user selects an orientation in a pole point or

orientation section view with a mouse click, and this orienta-

tion is instantaneously highlighted (e.g. by colouring in yellow)

in all other opened views. `Brushing' refers to transient

selections of orientations made `on the ¯y' and expunged as

soon as the mouse leaves their neighbourhood.

Displaying linked pole point views and brushing over them

enables the user to see where the other crystallographic axes

of a grain speci®ed by a speci®c direction of one crystal-

lographic axis point to. While dynamically linked pole point

views of different crystal forms provide the complete infor-

mation concerning a subset of crystal grains selected by the

user, section views provide information concerning a subset of

the orientation space selected by the user. Brushing pole point

views allows a rapid display of the orientation information for

the entire data set. Pole point views are complete in the sense

that two different data sets of individual crystallographic

orientations differ in at least one pole point view.

It is emphasized that reasonable brushing of pole point

views corresponds to a selection within a constant-area

spherical cap of the pole sphere. Then brushing has the same

equal-area property as sectioning of the orientation space.

This property is essential for a well controlled exploratory

data analysis and its easy interpretation.

Fixing the active selection displaying a special and inter-

esting subset of orientations by assigning a colour to the

currently selected points, known as `colouring' in interactive

statistical graphics, allows the user to view different groups

and orientation relationships simultaneously.

7. Examples

The von Mises±Fisher matrix or, equivalently, the Bingham

disribution for rotations represented by unit quaternions in

S3 � IR4 provides a model for three different patterns of

preferred crystallographic orientation: (i) bimodal axial, (ii)

multimodal circular and (iii) multimodal spherical; if the

distribution is rotationally symmetric, the three cases refer to a

simple texture, a ®bre texture, and a spherical surface texture

(component), respectively (cf. Schaeben, 1996; Kunze &

Schaeben, 2004). Individual rotation data according to the

three cases have been simulated with the parameter matrix

F � KM �33�
decomposed into the elliptical component K and the polar

component M. In all three cases, M has been chosen to

represent the identical rotation

M �
1 0 0

0 1 0

0 0 1

0
@

1
A:

To simulate rotationally symmteric distributions, the elliptical

component has been chosen as follows.

(a) In case (i) of an axial simple texture,

K1 � �
1 0 0

0 1 0

0 0 1

0
@

1
A; � � 50:

(b) In case (ii) of a ®bre texture,

K2 � �
0 0 0

0 0 0

0 0 1

0
@

1
A; � � 50:

(c) In case (iii) of a ring ®bre texture,

K3 � ÿ�
1 0 0

0 1 0

0 0 1

0
@

1
A; � � 50:

For all three cases, and triclinic crystal symmetry, ®rst the

spherical Radon transform is displayed for h = �001�t and h =

�111�t in equal-area projection of the lower and upper hemi-

sphere, both as pole point plot and pole density plot; then the

pole point plot of the spherical Radon transform for h = �001�t
augmented by h1 = �111�t and v = �010�t is depicted; and then

the spreading of the �001�t-pole point ®gure into ! sections

with respect to h1 = �111�t and v = �010�t is exposed.

Eventually, for all three cases, and trigonal symmetry, ®rst

the crystallographic X-ray transform is displayed for h = �001�t
and h = �111�t in equal-area projection of the lower and upper

hemisphere as pole point plot; then the pole point plot of the

crystallographic X-ray transform for h = �001�t augmented by

h1 = �111�t and v = �010�t is depicted; and then the spreading of

the �001�t-pole point ®gure into ! sections with respect to h1 =

�111�t and v = �010�t is exposed.

7.1. Radon transforms and x section in the case of triclinic

crystal symmetry

For the symmetrical bimodal axial case of the von Mises±

Fisher distribution (simple texture), the h = (001)t and the h =

(111)t-pole point (Figs. 3 and 5) and pole density plots (Figs. 4

and 6) show a strong circularly symmetrical maximum at r =

(001)t and r = 1/31/2(111)t, respectively. The augmented (001)t-

pole point plot (Fig. 7) shows that gi �111�t displayed at ri =

gi �001�t point to 1/31/2(111)t with little deviation. The !
sections (Fig. 8) reveal that the distribution of the angles

enclosed by the orthogonal projections of gih1 = gi(111)t and v

= (010)t onto the tangential plane at ri = gi �001�t is unimodally

symmetrically and strongly concentrated at ÿ�/4.

For the symmetrical circular case of the von Mises±Fisher

distribution (®bre texture), the h = (001)t-pole point (Fig. 9)

and the pole density (Fig. 10) plots show a strong circularly

symmetrical maximum at r = (001)t. The h = (111)t-pole point

(Fig. 11) and pole density (Fig. 12) plot show a symmetrical

small circle distribution with an aperture angle of 54�. The

augmented (001)t-pole point plot (Fig. 13) indicates a uniform

distribution of the angles enclosed by the orthogonal projec-

tions of gih1 = gi(111)t and v = (010)t onto the tangential plane

at ri = gi �001�t. The ! sections (Fig. 14) con®rm the uniform

distribution.
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Figure 3
Pole point plot of the spherical Radon transform of the axial distribution
(simple axial texture) for h = (001)t in equal-area projection of the lower
(left) and the upper (right) hemisphere.

Figure 4
Pole density plot of the spherical Radon transform of the axial
distribution for h = (001)t in equal-area projection of the lower (left)
and the upper (right) hemisphere.

Figure 5
Pole point plot of the spherical Radon transform of the axial distribution
for h = (111)t in equal-area projection of the lower (left) and the upper
(right) hemisphere.

Figure 6
Pole density plot of the spherical Radon transform of the axial
distribution (simple axial texture) for h = (111)t in equal-area projection
of the lower (left) and the upper (right) hemisphere.

Figure 8
! sections of the (001)-pole point plot of the spherical Radon transform
of the axial distribution with step size �! = 11.25.

Figure 7
Augmented pole point plot of the spherical Radon transform of the axial
distribution for h = (001)t in equal-area projection of the lower (left) and
the upper (right) hemisphere, displaying the direction of (111) at each
pole point h1 = gih

Figure 9
Pole point plot of the spherical Radon transform of the circular
distribution for h = (001)t in equal-area projection of the lower (left)
and the upper (right) hemisphere.

Figure 10
Pole density plot of the spherical Radon transform of the circular
distribution for h = (001)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.
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Figure 11
Pole point plot of the spherical Radon transform of the circular
distribution for h = (111)t in equal-area projection of the lower (left)
and the upper (right) hemisphere.

Figure 12
Pole density plot of the spherical Radon transform of the circular
distribution for h = (111)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.

Figure 13
Augmented pole point plot of the spherical Radon transform of the
circular distribution for h = (001)t in equal-area projection of the lower
(left) and the upper (right) hemisphere, displaying the direction of (111)
at each pole point hi = gih.

Figure 14
! sections of the (001)-pole point plot of the spherical Radon transform
of the circular distribution with step size �! = 11.25.

Figure 15
Pole point plot of the spherical Radon transform of the spherical
distribution for h = (001)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.

Figure 16
Pole density plot of the spherical Radon transform of the spherical
distribution for h = (001)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.

Figure 17
Pole point plot of the spherical Radon transform of the spherical
distribution for h = (111)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.

Figure 18
Pole density plot of the spherical Radon transform of the spherical
distribution for h = (111)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.
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For the symmetrical spherical case of the von Mises±Fisher

distribution (spherical surface texture), both the h = (001)t and

the h = (111)t-pole point (Figs. 15 and 17) and pole density

plots (Figs. 16 and 18) show a weak circularly symmetrical

maximum at r = ÿ(001)t and r = ÿ1/31/2(111)t, respectively.

The augmented (001)t-pole point plot (Fig. 19) exposes a

distinguished pattern of gi �111�t directions displayed at ri =

gi �001�t. The ! sections (Fig. 20) show that the distribution of

the angles enclosed by the orthogonal projections of gih1 =

gi(111)t and v = (010)t onto the tangential plane at ri = gi �001�t

is unimodally symmetrically and weakly concentrated at 3�/4.

7.2. Crystallographic X-ray transforms and x section in the

case of trigonal crystal symmetry

For the symmetrical bimodal axial case of the von Mises±

Fisher distribution (simple texture) with trigonal crystal

symmetry imposed, the h = �001�t and the h = �111�t-pole point

(Figs. 21 and 22) show a strong circularly symmetrical

maximum at r = ��001�t and r = �1=31=2�111�t and its

symmetrical equivalents, respectively. The augmented �001�t-
pole point plot (Fig. 23) shows that gi�111�t and their

symmetrical equivalents displayed at ri = gi�001�t point to

1=31=2�111�t and their symmetrical equivalents with little

deviations. The ! sections (Fig. 24) reveal that the distribution

of the angles enclosed by the orthogonal projections of gi h1 =

gi �111�t and v = �010�t onto the tangential plane at ri = gi�001�t

is symmetrically multimodal and strongly concentrated at

�2`ÿ 1��=6; ` = 1; . . . ; 6.
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Figure 20
! sections of the (001)-pole point plot of the spherical Radon transform
of the spherical distribution with respect to h1 = (111)t and v = (010)t with
step size �! = 11.25.

Figure 19
Augmented pole point plot of the spherical Radon transform of the
spherical distribution for h = (001)t in equal-area projection of the lower
(left) and the upper (right) hemisphere, displaying the direction of gih1 =
gi�111�t at each pole point ri = gih.

Figure 21
Pole point plot of the crystallographic X-ray transform of the axial
distribution for h � �001�t in equal-area projection of lower (left) and
upper (right) hemisphere.

Figure 22
Pole point plot of the crystallographic X-ray transform of the axial
distribution for h = (111)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.

Figure 23
Augmented pole point plot of the crystallographic X-ray transform of the
axial distribution for h = (001)t in equal-area projection of the lower (left)
and the upper (right) hemisphere, displaying the direction of gih1 =
gi�111�t and its symmetry equivalents at each pole point ri = gih.

Figure 24
! sections of the (001)-pole point plot of the crystallographic X-ray
transform of the axial distribution with respect to h1 = (111)t and v =
(010)t with step size �! = 11.25.
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Figure 25
Pole point plot of the crystallographic X-ray transform of the circular
distribution for h = (001)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.

Figure 26
Pole point plot of the crystallographic X-ray transform of the circular
distribution for h = (111)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.

Figure 27
Augmented pole point plot of the crystallographic X-ray transform of the
circular distribution for h = (001)t in equal-area projection of the lower
(left) and the upper (right) hemisphere, displaying the direction of gi h1 =
gi �111�t and its symmetry equivalents at each pole point ri = gih.

Figure 28
! sections of the (001)-pole point plot of the crystallographic X-ray
transform of the circular distribution with respect to h1 = (111)t and v =
(010)t with step size �! = 11.25.

Figure 29
Pole point plot of the crystallographic X-ray transform of the spherical
distribution for h = (001)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.

Figure 30
Pole point plot of the crystallographic X-ray transform of the spherical
distribution for h = (111)t in equal-area projection of the lower (left) and
the upper (right) hemisphere.

Figure 31
Augmented pole point plot of the crystallographic X-ray transform of the
spherical distribution for h = (001)t in equal-area projection of the lower
(left) and the upper (right) hemisphere, displaying the direction of gi h1 =
gi �111�t and its symmetry equivalents at each pole point ri = gih.

Figure 32
! sections of the (001)-pole point plot of the crystallographic X-ray
transform of the spherical distribution with respect to h1 = (111)t and v =
(010)t with step size �! = 11.25.
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For the symmetrical circular case of the von Mises±Fisher

distribution (®bre texture), the h = �001�t-pole point plot (Fig.

25) shows a strong circularly symmetrical maximum at r =

�001�t. The h = �111�t-pole point plot (Fig. 26) shows a

symmetrical small circle distribution with an aperture angle of

54�. The augmented �001�t-pole point plot (Fig. 27) indicates a

uniform distribution of the angles enclosed by the orthogonal

projections of gi h1 = gi �111�t and v = �010�t onto the tangential

plane at ri = gi�001�t. The ! sections (Fig. 28) con®rm the

uniform distribution.

For the symmetrical spherical case of the von Mises±Fisher

distribution (spherical surface texture), the h = �001�t and the

h = �111�t-pole point plot (Figs. 29 and 30) show a weak

circularly symmetrical maximum at r = ÿ�001�t and r =

ÿ1=31=2�111�t and its symmetrical equivalents, respectively.

The augmented �001�t-pole point plot (Fig. 31) exposes a

distinguished pattern of gi�111�t directions displayed at ri =

gi�001�t. The ! sections (Fig. 32) show that the distribution of

the angles enclosed by the orthogonal projections of gi h1 =

gi �111�t and v = �010�t onto the tangential plane at ri = gi�001�t

is uniform.

8. Conclusions

Any information concerning the location of contributing

grains or orientational relationships of neighbouring grains

would require different data and different experimental

techniques than X-ray or neutron diffraction, and eventually

methods of orientation mapping. The display of orientation

and pole probability density functions conveys only summary

information about the texture. Therefore, an orientation

probability density function should be displayed in the most

sensible possible way, providing the best possible insight by

exhibiting simultaneous orientational relationships of two

different crystal axes with two different specimen directions in

! sections such that their superposition yields a user-speci®ed

pole probability density function. Most instructively, with an

augmented pole point plot or the corresponding ! sections,

respectively, the bimodal axial and the multimodal spherical

von Mises±Fisher distribution can be distinguished with a

single plot.
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