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Samples with group scale

Geology is concerned with many different scales. Beside the classic scale hierarchy from
binary over categorical, ordinal, interval, natural to real scale and multivariate vector scale,
geological statistic is concerned with special equivalance classes of groups: rotations SO(3) dis-
cribing plate movements, the sphere [6] S2 = SO(3)/”rotations around z” discribing directions,
the simplex [1] discribing compositions, crystallographic orientations SO(3)/G [4], orientations
of planes and axis S2/{−1} e.g. of schist or folding, configurations of objects and orders of
sequences given by Sn/”equivalence of layers”. Here I would like to give a general view to
statistics of observations from these compact groups G and their derived spaces like (right-)
quotients of groups G/R with ∀ḡ1, ḡ1 ∈ G/R : ḡ1 = ḡ2 :⇔ ∃r ∈ R : g1 = g2r.

Group scale differs from real scale by some important aspects:

• Groups have only one operation, which I will write as a multiplicative operation.

• There is essentially only one R and only one Rd, but there are many different groups.

• Real statistics rely on 0, 1, ‖ ‖2, < and are concerned with mean, variance, cdf and ranks
– things quite meaningless on groups –. With groups we have subgroups and symmetry.

Theoretical background for compact groups: Haar-measure, representations

On a compact group G the canonical measure replacing the Lebesgue-measure is the
Haar measure µG defined as the only measure invariant under the operation of the group[7]
(i.e. ∀A∀g ∈ G : µG(A) = µG(gA)) and unit mass µG(G) = 1. L2(G) := L2(µG) of G is
spanned by the matrix elements of the representations Tl(g) = (Tmn

l (g))mn, l = 0, . . . ,∞ [9] of
G. The Tl are group homomorphisms.

An important problem of the statistics of groups is the consideration of symmetry and
thus to define for any subgroups L, R C G an orthogonal basis of L2(LGR) = {f ∈ L2(G) :
f(lgr) = f(g)∀l ∈ L∀r ∈ R}. Such basis can be constructed by fixing orthogonal rectangular
matrices Al with imAl = 〈Tl(g) : g ∈ L〉⊥, and Bl with imBl = 〈Tl(g) : g ∈ R〉⊥ and define[4,
cf.]:

TLR
l (g) := At

lTl(g)Bl

Characteristic functions, convolution and moments

A replacement for characteristic function of a distribution P on G is a mapping from the
frequency domain N0 to matrices of varying frame size given by:

f ∗P (l) :=

∫
Tl(g)dP (g) =

∫
Tl(g)fP (g)dµG(g)

In general f ∗P (i) is a function in L∞(N0) and the characteristic function of a convolution

(P1 ∗ P2)(A) :=

∫
G

∫
G

1A(g1g2)dP1(g1)dP2(g2)



is given by f ∗P1∗P2
(l) = f ∗P1

(l)f ∗P2
(l). A concept of linear moments in the sense of Rd does not

exist for groups. The µl :=
∫

Tl(g)dP (g) = f ∗P (l) can instead be seen as non centered or
harmonic moments of P . The µl are not elements of the group, however linear with respect to
group operations: µσXτ

l = Tl(σ)µX
l Tl(τ)

Symmetry, kernels and distances

Let us call a function left symmetric with respect to S ⊂ G when ∀s ∈ S∀g ∈ G :
f(sg) = f(g), right symmetric, when ∀s ∈ S∀g ∈ G : f(gs) = f(g), double symmetric, when
∀s ∈ S∀t ∈ S∀g ∈ G : f(sgt) = f(g) and conjugationally symmetric, when ∀s ∈ S∀g ∈ G :
f(sgs−1) = f(g).

Some statistical procedures rely on kernels or covariance functions, which are positive
semidefinite functions c(g1, g2) invariant under operation of the group: c(sg1t, sg2t) = c(g1, g2)
implying c(g1, g2) = k(g−1

1 g2) with a conjugationally symmetric k(g) =
∑

l αltrTl(g). Positive
definiteness is equivalent to ∀l : αl > 0. For some statistical procedures (kernel density estima-
tion, location parameters) we need such sequence (αl)l. For a given sequence (αl)l a distance,
which is useful even after symmetrization, of two group elements is defined by:

dα(g1, g2) :=

√∑
l

α2
l ‖Tl(g1)− Tl(g2)‖2

Measures of location and spread, symmetric location

In real scale the first and second moment are measures of location and spread. Here we
can consider a single µl as a measure of location as well of spread, which is well known for
the special case of the spherical Fisher distribution[6], however µl 6∈ G. A location parameter
g ∈ G with

∑
l α

2
l ‖Tl(g)− µ̂l‖2 → min can be considered as a parameter of location, especially,

when we consider that this g is also given by:

gα := argmin
g0

E[dα(g0, g)], ĝα := argmin
g∈G

∑
i

dα(g, gi)
2

Correspondingly a metric variance spread could be defined by:

varα(g) := E[dα(gα, g)2], ˆvarα(g) :=
1

n− 1

∑
i

dα(ĝα, gi)
2

gα is unique up to the symmetry acutally present in the distribution or in the data. Thus e.g.
for the uniform distribution every g ∈ G is with equal right the location. When we assume
some symmetry in the distribution, we can remove all distance that can be induced by that
symmetry by replacing the distance dα by:

dLR
α (g1, g2) :=

√∑
l

α2
l ‖TLR

l (g1)− TLR
l (g2)‖2

For trivial α this can get a trivial distance dLR
α (g1, g2) ≡ 0. However for (αl)l, αl > 0∀l this

distance not degenerated and based on them we can define a symmetric location and spread
parameters by:

gLR
α := argmin

g0∈L\G/R

E[dLR
α (g0, g)], ĝLR

α := argmin
g∈L\G/R

∑
i

dLR
α (g, gi)

2

varLR
α (g) := E[dLR

α (gLR
α , g)2], ˆvarLR

α (g) :=
1

n− 1

∑
i

dLR
α (ĝLR

α , gi)
2



All these estimators are strongly consistently up to the symmetry actually present in the data.
To have an interpretation of the α-variance it is important to get an idea of the meaning

of the dα on the specific group.

Empirical distribution, V,U-statistics

Instead of empirical cdfs we use the symmetric empirical distribution:

P̂ (A) =
1

n

n∑
i=1

∫ ∫
1A(σgiτ)dµL(σ)dµR(τ)

P̂ (A) estimates P (A) strongly consistent for any A with µ(A) > 0. This type of convergence
replaces convergence in every continuity point of the distribution function. For any functional
of the distribution given by a k-positional kernel Ψ:

β =

∫
. . .

∫
Ψ(g1, . . . , gk)dP (g1) . . . dP (gk)

we can define a consistent V-estimate[8] on the group by:

β̂V =

∫
. . .

∫
Ψ(g1, . . . , gk)dP̂ (g1) . . . dP̂ (gk) =

1

nk

n∑
i1=1

. . .
n∑

ik=1

Ψ(gi1 , . . . , gik)

or a consistent and unbiased U-estimate[8] on the group by:

β̂U =
1(

n
k

)
k!

∑
i1 6=... 6=ik

Ψ(gi1 , . . . , gik)

The difference to the classical V- and U- estimators is only the notation, which changed uses
measures instead of the no longer defined distribution functions.

Symmetric kernel density estimation

In general a kernel density estimation [5, cf.] on G can be given by the convolution of
a kernel on G with the discrete distribution given by the data gi. When we assume f to be
symmetric with respect to LCG from left and RCG from right we might give a correspondingly
symmetric kernel density estimate by:

f̂(ḡ) =
1

n

n∑
i=1

∫ ∫ ∫
k(sg−1

i lgr)dµS(s)dµL(l)dµR(r) =
d(µL ∗K ∗ P̂ ∗ µR)(ḡ)

dµG/S(ḡ)

With α0 = 1 f̂ is an unbiased estimator for a smoothed version of the density: E[f̂ ] = d(K∗P )(g)
dµG(g)

with P = µL∗P ∗µR due to assumed symmetry of P , µL∗K = K∗µL, and P ∗K = K∗P due to
the conjugational symmetry of K. Other aspects of kernel density estimation, like prediction
error, consistency [5, cf.] and confidence bounds [4, cf.] are similar to the special cases for
Stiefel manifolds or crystallographic orientations discussed elsewhere.

Distributions and models

A general class of exponential families for our, scale containing the uniform, the matrix
Langevin [5, cf.], von Mises-Fisher-matrix [6] and Beran’s [3] general distribution families on
the sphere as special cases and used for crystallographic orientations in [4], is given as follows

Fix a group G, left and right symmetry groups L, R (eventually L = R = {1}) and a
maximum degree of series expansion D. Then for every choice of Θ = (Θl)l, Θl ∈ RMN 3<



TLR
l (g) > the following is an exponential family distribution density, which is symmetric with

respect to L from left and with respect to R from right:

dPLGRDΘ(g)

dµG(g)
= A(Θ) exp

(∑
l≤D

trΘt
lT

LR
l (g)

)
, A(Θ) = normalization

The results of [4] on crystallographic exponential families can be generalized: the normalization
constant always exists due to the compactness of the space. The family can alternatively be
parameterized by all moments µl with l showing up in the sum. The maximum likelihood
estimator factorizes over the corresponding empirical moments. The distribution is the one
with maximum µG-entropy among all distributions with that given moments.

Regression in group scale can be done by generalized linear regression models with natural
link based on a linear expansion of Θ- parameter of PLGRDΘ or the Langevin distribution in
terms of real and categorical regressors and in terms of Tl(g) of group scale regressors and in
terms of AlT

LR
l (ḡ)Bt

l of regressors ḡ ∈ L\G/R [4].
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RÉSUMÉ

A general statistics for compact groups allows to analyze many different geological data
in a uniform way. On one hand statistical analysis at compact group scale differs in questions,
methodology and computational problems substantially from other scales. On the other hand
based on representation theory most classical ideas can be transported in a general way into group
scale. Only some examples are given here. While the classical aspects of normal distribution
and linearity get meaningless, new canonical concepts of symmetry and uniformity arise. The
concept of moments separates from the concept of parameters of location and scale. While
the moments naturally express symmetry, we need to invent new descriptions of location for
symmetric distributions.


