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Abstract

The present work deals with two challenging problems of applied geostatistics: (i) Station-
arity assumptions often do not hold under real-world conditions. (ii) Geostatistical methods
have to be linked with spatial databases in order to be applicable in non-stationary situations.
Solutions for both problems are proposed and implemented.

(i) A central assumption in geostatistics is the stationarity of the process. However the
spatial variability of many natural phenomena heavily depends on the local geology, which is
non-stationary in most cases. To deal with this, the concept of process stationarity is replaced by
a stationarity of the governing influence relating the local semivariogram and the local geology as
stored in a Geographical Information System (GIS). A construction method is used, which can
meaningfully incorporate additional spatial information from GIS, e.g. smoothly varying geology
in the investigated area or geological faults interrupting continuity. Least-squares parameter
estimation is used for fitting instationary semivariogram models in typical example situations,
leading to non-linear optimization problems.

(ii) Geostatistical tools that make use of the local geology need direct access to the data stored
in the GIS. A link between the presented geostatistical tools and the GIS software ArcView was
established. Thus, spatial data such as soil properties and morphology can be incorporated in
geostatistical analyses.

R code that fits instationary semivariogram models and performs kriging is provided. It is
applied to simulated data.

Resumen

Este trabajo trata dos problemas desafiantes de la geoestad́ıstica aplicada: (i) Bajo condi-
ciones reales, muchas veces no son válidas las suposiciones de estacionaridad. (ii) Los métodos
geoestad́ısticos deben ser vinculados con bases de datos espaciales para ser aplicables en situa-
ciones no estacionarias. Se proponen e implementan soluciones para ambos problemas.

(i) En geoestad́ıstica, una suposición central es la estacionaridad del proceso. Sin embargo,
la variabilidad espacial de muchos procesos depende estrechamente de la geoloǵıa local, la cual
es inestacionaria en la mayoŕıa de los casos. Para tratar esto, el concepto de estacionaridad del
proceso es reemplazado por una estacionaridad de una ley de influencia; ésta vincula el semi-
variograma con la geoloǵıa local tal como está guardada dentro de un Sistema de Información
Geográfico. Se usa un método de construcción que permite incorporar información espacial de
un SIG, por ejemplo una geoloǵıa que vaŕıa de manera cont́ınua dentro del área de estudio o fal-
las geológicas que interrumpen la continuidad. Se aplica una estimación de mı́nimos cuadrados
para ajustar modelos paramétricos de semivariogramas inestacionarios en situaciones ejemplares
t́ıpicas, resultando en problemas de optimización no lineales.

(ii) Herramientas geoestad́ısticas que se apoyan en la geoloǵıa local precisan de un acceso
directo a los datos guardados en el SIG. Se estableció un v́ınculo entre la herramienta geoes-
tad́ıstica presentada y el SIG ArcView. De esta manera pueden incorporarse a los análisis
geoestad́ısticos datos espaciales tales como propiedades del suelo y la morfoloǵıa.

Se facilita un código de R que ajusta modelos de semivariogramas inestacionarios y realiza
krigeado. El código es aplicado a datos simulados.
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1 Introduction

The amount of spatial information that is available within GIS is increasing rapidly due to the col-
lection of thematic data using remote sensing techniques. These data are often useful for modeling
local (non-geometrical) anisotropies following morphology or tectonic structures, e. g. This devel-
opment creates a need for instationary geostatistical methods that meaningfully incorporate this
information, enabling us to model complex geologic situations such as tectonic faults interrupting
continuity or drainage systems inducing nested patterns of anisotropy. These methods must be
linked with a GIS.

2 Theoretical Background

We consider a real-valued stochastic processes Z = (Zs)s∈D of second order with parameter set
D ⊂ Rd, d ≥ 2.

2.1 A Method of Instationary Covariogram Construction

We study processes with covariograms that are induced by a weight function. We will see that these
induced covariograms approximate stationary covariograms arbitrarily well. Of particular interest
will be weight functions that incorporate covariables describing local conditions such as anisotropy.
Let E be a non-empty measurable Borel set in Rd.

Definition 2.1 A weight function on D×E is an arbitrary function w : D×E → R such that for
all s ∈ D

νw(s) :=
∫
E
w(s, p)2 dp <∞.

A weight function on D × E is called isotropic, if there exists a function wi : R → R such that
w(s, p) = wi(‖p− s‖) for all s ∈ D, p ∈ E.

Theorem 2.2 For an arbitrary weight function w on D×E and all s, t ∈ D there exists the integral

Cw(s, t) :=
∫
E
w(s, p)w(t, p) dp, (1)

and the function Cw is positive semidefinite. Furthermore, Cw is the covariogram of a second-order
process on D; it is called the covariogram induced by w.

Proof: The integral in (1) exists and is finite. Furthermore, if for n ∈ N, we choose arbitrary
t1, . . . , tn ∈ and a1, . . . , an ∈ R, then we obtain

n∑
i=1

n∑
j=1

aiajCw(ti, tj) =
n∑
i=1

n∑
j=1

aiaj

∫
E
w(ti, p)w(tj , p) dp

=
∫
E

n∑
i=1

aiw(ti, p)
n∑
j=1

w(tj , p) dp =
∫
E

(
n∑
i=1

aiw(ti, p)

)2

dp ≥ 0.

Hence Cw is positive semidefinite. Cw is also symmetric, so there exists a second-order process on
D with covariogram Cw. 2

Remark 2.3 The semivariogram γ corresponding to a covariogram C that is induced by an arbi-
trary weight function w is of the form

γ(s, t) = 1
2C(s, s) + 1

2C(t, t)− C(s, t)

= 1
2

∫
Rd

(
w(s, p)2 + w(t, p)2 − 2w(s, p)w(t, p)

)
dp

= 1
2

∫
Rd

(w(s, p)− w(t, p))2 dp. (2)
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Theorem 2.4 (Approximation of stationary covariograms) Every stationary covariogram C
on Rd that has a spectral density g = dG/dλ can be approximated arbitrarily well with respect to
the essential supremum ‖ · ‖∞ by an induced covariogram, i. e.: For every ε > 0 there exists a
translation invariant weight function w(s, t) = ws(t− s) that induces a covariogram Cw with

‖C − Cw‖∞ < ε.

Proof: Cf. van den Boogaart (1999).

Remark 2.5 Assuming the existence of a spectral density in Theorem 2.4 implies that neither a
nugget effect nor a covariogram not vanishing as ‖h‖ → ∞ can be approximated arbitrarily well by
weight functions. However a nugget effect can be added a posteriori to an induced covariogram.

For motivation we now present a well-known example of an induced covariogram that is isotropic
(cf. Wackernagel (1998)). Later it will be used as a point of departure for modeling anisotropies.

Example 2.6 (Spherical covariograms) For fixed a = 2R > 0 and E = Rd ⊃ D, consider the
isotropic weight function

w : D ×Rd → R, w(s, p) = 1[0,R)(‖p− s‖), s ∈ D, p ∈ Rd.

and its normalization scaled by σ > 0,

w̃(s, p) = σ · w(s, p)/
√
νw(s) = σ · 1[0,R)(‖p− s‖)/λd(Bd(0, R)).

We study the covariograms induced by w̃ for d = 3, 2, which writes

Cw̃(s, t) = σ2 · λd
(
Bd(s,R) ∩Bd(t, R)

)
/ λd(0, R).

i) d = 3: We get the spherical covariogram in three dimensions. The usual two-dimensional version
is obtained by taking D′ = D × {0}, D ⊂ R2.
ii) d = 2: We have to calculate the area of dissection of two discs of radius R in R2. Geometrical
considerations yield

Cw̃(h) = σ2

π

(
2 arccos (h/a)− h

4a2

√
a2 − h2

)
, if h < a,

0 otherwise. The isotropic covariogram Cw̃ is continuous, but its first derivative has a singularity
at h = 2R, unlike the spherical covariogram.

2.2 Modeling Local Anisotropy

Theorem 2.4 showed that the class of covariograms induced by a weight function is sufficiently large
as to be useful instruments for covariogram modeling. The construction method will be used for
creating a class of semivariograms and covariograms that can adapt to local anisotropies that may
be quite irregular, but follow a known pattern.
From now on we choose d = 2 and E ⊂ R2.

Definition 2.7 (Elliptical covariograms) Let woτ : R → R, τ ∈ T 6= ∅, be an isotropic weight
function with support ⊂ B2(0, 1). For r ≥ 0, q ∈ (0, 1] and φ ∈ [0, π) we define

R(r, q, φ) =
1
r

(
cosφ sinφ

−q−1 sinφ q−1 cosφ

)
to be a combined contraction and rotation by −φ satisfying

R(r, q, φ)Ell(0; r, q, φ) = B2(0, 1),
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Figure 1: Semivariogram plots: a) Spherical semivariogram (Example 2.6 i)). b) Simple elliptical
semivariogram (Remark 2.9, Example 2.6 ii)). c) Elliptical semivariograms corresponding to the
piecewise linear kernel function with break points at b = 0 (solid line) and b = 0.8 (dashed).
d) Elliptical semivariograms corresponding to the Bezier kernel function with exponents ν = 0.3
(solid line), 1 (dotted) and 3 (dashed).

where Ell(0; r, q, φ) denotes the open two-dimensional ellipse around 0 with longer radius r in an
angle of φ with the x1-axis and axis ratio q.
Now consider a function θ = (σ2, a, q, φ, τ) : D → R

+
0 ×R+ × (0, 1]× [0, π)× T . Then we define

w∗θ : D ×Rd → R, w∗θ(s, p) = 1E(p)woτ(s)(‖R(a(s)
2 , q(s), φ(s)) · (p− s)‖),

well
θ : D × E → R, well

θ (s, p) = σw∗θ(s, p) · ν∗θ (s)(−1/2).

Then the weight function well
θ is called an elliptical weight function on D. Covariograms and

semivariograms induced by elliptical weight functions are also said to be elliptical. woτ will be
referred to as a kernel function. A component of θ is called a parameter , if it is a constant
function, otherwise a covariable.

Remark 2.8 In this work, the elliptical semivariograms considered have parameters σ2, a, q and
τ , and one single covariable φ, unless specified otherwise.

Remark 2.9 Kernel functions for elliptical semivariograms are for example

wind(h) = 1[−1,1](h), (“simple kernel function”)

wpwl
b (h) =


1 if |h| ≤ b,
1− (|h| − b)/(1− b) if b < |h| < 1,
0 otherwise,

(“piecewise linear kernel fn.”)

wbez
ν (h) =

{
(h+ 1)ν(h− 1)ν if |h| < 1,
0 otherwise,

(“Bezier kernel fn.”)

Simple elliptical covariograms (induced by the simple kernel function) with q = 1 are isotropic and
coincide with the covariogram Cw̃ in Example 2.6 ii.
Even the simple area of dissection of these ellipses is difficult to determine analytically. In this work
quasi-Monte Carlo integration methods will be applied for approximating elliptical semivariograms.
The covariograms and semivariograms induced by the Bezier kernel function (see figure 1) are b2νc
times continuously differentiable because wbez

0 is (exactly) bνc times continuously differentiable.
The other kernel functions presented are not differentiable on ∂B2(0, 1).

4



The following example shows how the class of elliptical semivariograms can be extended, and how
parameters and covariables can be chosen in order to represent qualitative knowledge of the geologic
processes to model.

Example 2.10 (Modeling soil loss by water run-off) Soil erosion by water run-off is a geo-
morphological process that basically depends on morphology, vegetation, land use, soil properties
and precipitation regime. At a small scale, however, the size of the catchment area and the slope’s
inclination are the most important factors that influence soil erosion. The soil loss at one point
depends on the soil loss uphill in the same catchment area, and little correlation with soil loss on
the other side of a ridge or on the opposite side of a valley can be assumed.
For a point s ∈ D, let A(s) ⊂ R

2 denote its catchment area. Then a weight function w on
D × Rd with suppw(s, ·) = A(s) incorporates our knowledge of the relation between soil erosion
and morphology.
i) As an example, we define a weight function by (the normalization of)

wθ̃(s, p) = well
θ (s, p)1A(s)(p), θ̃ = (θ,1A(·)),

where well
θ is an arbitrary elliptical weight function with covariable a : s 7→ 2 supp∈A(s) ‖p− s‖ and

parameters σ2 and τ , the axis ratio q = 1 being constant and hence φ without any effect.
The catchment area of a point can be determined by digital terrain modeling, and a large number
of expensive GIS calls to evaluate 1A(s)(p) is necessary to approximate the induced semivariogram
by numerical integration.
ii) A computationally less demanding method is the following, which approximates wθ̃ quite well in
sufficiently regular relief. Let R(s) be the shortest distance to the ridge that lies uphill from s, and
let φ(s) ∈ [0, 2π) denote the gradient of topography at s expressed as an angle, and δ(s) ∈ (0, π]
an opening angle. Then for an arbitrary elliptical weight function well

θ with q = 1 and covariables
a = 2R and φ, we take (the normalization of)

w′
θ̃
(s, p) = well

θ (s, p)1Sec(s;φ(s),δ(s),a(s)/2)(p),

where Sec(s; a(s)/2, φ(s), δ(s)) ⊂ B2(s, a(s)/2) denotes the disc sector with opening angle δ(s) and
radius a(s)/2 oriented according to φ(s). The opening angle δ(s) could for example be constant or
a function of local curvature at s.

2.3 Modeling Boundaries between Subprocesses

In many geostatistical applications we find the following situation: The parameter set D of the
process Z of interest decomposes into η disjoint subsets D1, . . . , Dη ⊂ D such that the subprocesses
Z1 := Z|D1 , . . . , Zη := Z|Dη have little or no correlation between each other. Instead of studying
each subprocess separately, one might wish to study the process Z as a whole.
Let wo1, . . . , w

o
η be weight functions on D×R2. We consider the following situations (i = 1, . . . , η):

“strong boundaries”: w∗i (s, p) := woi (s, p)1Di(s)1Di(p), C∗ =
∑

k Cw∗i ,
“ordinary boundaries”: wi(s, p) := woi (s, p)1Di(s), C =

∑
k Cwk ,

“soft boundaries”: w#(s, p) :=
∑

k w
o
i (s, p)1Di(s), C# = Cw# .

Remark 2.11 i) The subprocesses of a process with ordinary or strong boundaries are uncorre-
lated; those of a process with soft boundaries are generally correlated.
ii) Near the boundaries between D1, . . . , Dη, covariograms with strong boundaries are greater than
their analogues with ordinary boundaries (figure 2). This is due to the normalizing factor that
decreases rapidly as the integration domain is being cut by 1Di .
iii) When approximating covariograms with strong boundaries using numerical integration, the
functions 1Di , i = 1, . . . , η, have to be evaluated at each node p ∈ E. In practice, D1, . . . , Dη

generally are polygons stored within a Geographical Information System, and evaluations of 1Di
have to be considered as expensive GIS queries.
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Figure 2: Left: Covariograms with ordinary (solid line) and strong boundaries (dashed) near the
boundaries. Right: The covariogram from Example 2.12 with soft boundaries.

Example 2.12 (Soft boundaries) Suppose D1 ∪ D2 = D, D1 ∩ D2 = ∅, and let C denote a
covariogram with soft boundaries between D1 and D2 induced by a weight function

wpwl
(1,a1,1,0)(s, p)1D1(s) + wpwl

(1,a2,1,0)(s, p)1D2(s)

(cf. Definition 2.7, Remark 2.9), where a1 < a2 are different range parameters. This may produce
a covariogram as shown in figure 2. It will generally not be desirable to introduce a positive
correlation C(s, t) for s ∈ A1 and ‖t− s‖ > a1, as seen in the figure.

Remark 2.13 (Smooth transitions) The problem encountered in Example 2.12 with soft bound-
aries may be avoided by allowing the weight function’s parameter θ ∈ Θ to vary smoothly in space,
i. e. modeling it as a covariable.

2.4 Generic Stationarity: towards Stationarizing Instationarity

By construction the (generally non-geometrical) anisotropy of elliptical covariograms can be con-
sidered as rather regular because it is determined by the direction φ(s), s ∈ D, of local anisotropy,
which is assumed to be known. Therefore we want to introduce a concept that is more general
than that of stationarity and includes the elliptical case and other situations with “understandable”
instationarities.

Remark 2.14 In a more general setting than in the preceding example, we consider processes
that are embedded within a geological environment. The covariogram of such a process should be
a function of local geology, we write

C(s, t) = Cg(s, t; g(·)).

We wish to model the function Cg that maps local geology to the proces’ covariogram. The
resulting covariogram is no longer stationary, but depends on local geology. However, some degree
of stationarity remains, since the physical laws reflected in a model for Cg are the same at any
place. In particular, we assume that we would get the same covariogram in another place, if we
had the same geology there:

C(s+ h, t+ h) = Cg(s, t; Φ(·+ h)).

Example 2.15 Let Z be a process on D = R2 with elliptical covariogram C with parameter θ ∈ Θ
and direction of local anisotropy φ : R2 → [0, π). Then for all s, t, h ∈ R2 with φ(s) = φ(s+h) and
φ(t) = φ(t+ h) it holds

C(s, t) = C(s+ h, t+ h). (3)

That is, it holds “something like” a stationarity property conditional on the direction of local
anisotropy φ.
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However, there will probably exist points s+h′, t+h′ ∈ R2 with φ(s) 6= φ(s+h′) or φ(t) 6= φ(t+h′). If
we go beyond the covariogram itself and study the way how its generation depends on the covariable
φ, we will find out that for all s, t ∈ R2, we have

∀h ∈ R2 : C(s+ h, t+ h) = Cg(s, t;φ(·+ h)), (4)

where the function Cg : R2 ×R2 × {φ(·+ h′) : h′ ∈ R2} → R, is defined by

Cg(s, t;φ(·+ h)) =
σ2

ν

∫
R2

woθ(‖R(φ(s+ h); θ)(p− s)‖)woθ(‖R(φ(t+ h); θ)(p− t)‖dp (5)

with an appropriate normalizer ν. Thus, C(s+h, t+h) only depends on s, t and the moved geology
represented by φ(·+ h).
The last two equations suggest that “if we had φ(s) = φ(s+h′) and φ(t) = φ(t+h′), then we would
get C(s, t) = C(s+ h′, t+ h′)” —a hypothetic version of (3), based on our belief in the validity of
the law expressed in (4) and (5).
The following definition reflects this concept in a precise way.

Definition 2.16 (Generic stationarity) Consider a process Z on D = Rd with covariogram C,
semivariogram γ and mean m, and let g : Rd → T be a mapping onto an arbitrary set T . Then we
define:

i) The process Z is strongly generically stationary with respect to g, if there exists a function
Pg such that

∀B ∀h ∈ Rd : P (Z·+h ∈ B) = Pg(B, g(·+ h)).

Or, more precisely,

∀B ∈ A ∀h ∈ Rd : P (Bh) = Pg(B; g(·+ h))

where Bh = {ω ∈ Ω : ∃ ω̃ ∈ B : Z·(ω) = Z·+h(ω̃)}, (Ω,A, P ∈ P) is a statistical model and
Pg a mapping {g : Rd → T} → P.

ii) Γ ∈ {C, γ} is generically stationary with respect to g, if there exists a function Γg such that

∀ s, t, h ∈ Rd : Γ(s+ h, t+ h) = Γg(s, t; g(·+ h)).

iii) If there exists a function mg such that

∀ s, h ∈ Rd : m(s+ h) = mg(s, g(·+ h)),

then m is generically stationary with respect to g, and Z is first-order generically stationary
with respect to g.

iv) Z is (second-order or weakly) generically stationary, if m and C are, and the process is
intrinsically generically stationary, if m and γ are generically stationary.

Pg, Γg and mg are called influence laws of generic stationarity, and g an influence function.

Remark 2.17 Generic stationarity says that the distribution laws of Zs and Zt, s, t ∈ D, are or
become the same, if local geology around s and t are the same or are “forced” to be the same.
That is, generic stationarity assumes that there is something like a law of nature that determines
the distribution of a random variable given the local geology g. Depending on how we choose
the function g, generic stationarity becomes a triviality or an instrument that describes how a
distribution law is determined by the environment.
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Example 2.18 i) Elliptical semivariograms are stationary with respect to their covariables.
ii) If Z is a process with a deterministic trend, Zs = Ys + βTf(s) for all s ∈ D, where (Ys)s∈D is a
zero-mean stationary process, then Z is generically stationary with respect to g = βTf .

Remark 2.19 Consider a generically stationary process Z with influence function g. g can take
two “extreme” cases: i) g is constant. Then Z is stationary in the usual sense. ii) g is bijective.
Then there is no condition on the distribution of Z. One could say that a constant influence
function gives no information on local geology, while a bijection contains complete knowledge of
local geology and hence explains arbitrary spatial variation of the process’ distribution. Between
these two extremes, there is a broad variety of meaningful influence laws (see the examples above).

3 Geostatistics and GIS

Our goal is to implement instationary geostatistical methods fully within a general-purpose data
analysis environment, and to provide direct access to this functionality from an exemplarily chosen
GIS. The applicability of the geostatistical routines will however not be restricted to a specific GIS
software.
For the implementation of geostatistical methods, the data analysis language and environment R
was chosen. R offers a simple and effective programming language that includes conditionals, loops
and user defined functions, and there exists a kind of object-oriented design. A great variety of
statistical models and methods is also available, among them linear models, clustering and time-
series analysis.
The R environment is open source. Open-source software is not only cheaper than commercial
alternatives; the main advantage of using it is related to the efficiency of problem-solving and
debugging within a community of users. Furthermore, full access to source code makes it possible
to find out details of the implementation that are not documented in the manuals (Bivand 1999).
R differs very little from the language S and its derivative S-PLUS.
As GIS platform, the commercial software ArcView 3.1 was chosen, because of its wide use in the
public and private sector. However, a relatively small amount of code has to be generated in order
to create an interface for a different GIS environment.
In total, about 100 KB of R code, 30 KB of C code and 30 KB of AVENUE source code were
produced. The code was developed for R 1.2.2, Microsoft Visual C++ 5.0 and ArcView 3.1 and
used within a Microsoft Windows 2000 5.0 / NT 4.0 client–server environment on Pentium II family
processors at Freiberg University.
Source code and further documentation can be obtained from the authors.

3.1 Approximating Semivariograms with Quasi-Monte Carlo Integration

When we fit a semivariogram model or do kriging, a great number of semivariogram evaluations
is needed, which are generally computed by approximating the integral in (1), if a model of the
elliptical class is used. Quasi-Monte Carlo techniques possess good asymptotic properties and are
often preferred to numerical methods, especially in higher-dimensional integration. For details of
quasi-Monte Carlo methods, we refer to Niederreiter (1992), Evans and Swartz (2000) and Press
et al. (1992).
Consider a covariogram C induced by a weight function w with bounded support. We want to ap-
proximate (non-zero values of) C(s, t), s, t ∈ D, E = Rd, i. e. the integral of fs,t(p) = w(s, p)w(t, p)
over a suitable interval A ⊃ supp fs,t = suppw(s, ·) ∩ suppw(t, ·). We use the quasi-Monte Carlo
approximation

ĈK(s, t) :=
λd(A)
K

K∑
i=1

fs,t(pi) ≈ C(s, t)

with p1, . . . , pK ∈ A. Using low-discrepancy sequences of nodes, the error of the quasi-Monte Carlo
approximation is of the order of (logK)d/K. Such a sequence is the Sobol sequence, which is used
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in this work in a modified version proposed by Antonov and Saleev. The implementation of the
generator is taken from Press et al. (1992).
We use an algorithm that computes the quasi-Monte Carlo approximation of covariograms induced
by elliptical weight functions. Both algorithms support ordinary and strong boundaries. The
algorithm uses nodes that are created a priori and recycled in every evaluation of Ĉ(si, sj). Thus,
the number of oracle calls 1Di(p) can be reduced significantly. Furthermore, all K oracle calls can
be performed at once, e. g. by just one call to a GIS.

3.2 Minimizing the Mean Squared Error

Remark 3.1 (Minimization in R) In R, non-linear minimization can be carried out using a
Newton-type algorithm available through the function nlm. In this work, nlm is used for minimiz-
ing mean squared error functions. It computes numerical derivatives of the target function and
consequently needs a high number of (expensive) function evaluations. Derivative-free techniques
may therefore be more efficient.

Observation 3.2 The mean squared error function corresponding to the simple elliptical semi-
variogram (Example 2.6, Remark 2.9) usually possesses local minima. This is related to the corre-
sponding semivariogram approximation being discontinuous with respect to the range parameter.
In contrast, the piecewise linear elliptical kernel function (Remark 2.9) with breaking point pa-
rameter b close to 1 is almost identical to the simple one, but it is continuous in its arguments
and hence the corresponding semivariogram approximation is continuous with respect to its range
parameter. The minimization of mean squared error performed quite well with this semivariogram
approximation using b = 0.95, for example, since small local minima are smoothed out now.

3.3 Implementation of Geostatistical Methods

Because of our emphasis on generically stationary processes, the generated R and C code will be
called MoGeS, which stands for “Modeling Generic Stationarity”.
The current implementation deals with the following geostatistical tasks1:
Semivariogram modeling: Select from a variety of stationary and instationary models, determine
covariables, assign fixed values to parameters, and add semivariograms. Furthermore, visualize
anisotropic semivariograms along a given path.
Semivariogram fitting: Estimate semivariogram parameters by minimizing the mean squared
error function.
Kriging: Perform universal and ordinary kriging.
Interaction with a GIS: Read and write geostatistical datasets in an interchangeable file format.
Simulation of datasets: Create random data to a given semivariogram.

The specific tasks result in a series of routines, most of them being represented as methods of object
classes.
Semivariogram (and covariogram) models are represented as objects of class sv, which is an
abstract parent of svfn, svc and csv representing different levels of specification and aggregation.
Semivariogram models “know” which parameters they need, if they are stationary etc.
Parameters are modeled as an independent object class param in order to allow meta-data such
as semantics or the range of valid parameter values to be handled consistently together with the
parameter vector itself.
Geostatistical data consists of locations, measurements and covariables stored in a svm.data
object.

1Furthermore, fitting of semivariograms in the presence of trend was implemented, which is discussed in the
presentation by K. G. van den Boogaart and A. Brenning: Why is Universal Kriging Better than IRFk-Kriging:
Estimation of Variograms in the Presence of Trend.
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Figure 3: Semivariogram fitting within ArcView using the ArcView/MoGeS interface.

Figure 4: R code produced by the ArcView/MoGeS interface in an example situation.

[...] # initialization

###### read geostatistical data

d <- read.svm.data( file="z:/scripts/humid.csv",

xnames="x", ynames="y", znames="Humo", gnames=c("orientation") )

n <- nrow(d$xy)

###### specify a semivariogram model

fpa <- param( c(0.9), # we have one fixed parameter

nm = c("break.elliptical.pwlinear.global"), sem = c("break") )

pa.al <- setnames( c("sill.elliptical.pwlinear.global", # parameter aliases

"range.elliptical.pwlinear.global","q.elliptical.pwlinear.global",

"break.elliptical.pwlinear.global"),

c("sill","range","q","break") )

g.al <- setnames( c("orientation.elliptical.pwlinear.global"), # covariable aliases

c("orientation") )

svc1 <- svc( svfn.elliptical.pwlinear.global, # a ‘svc’ semivariogram object

fix.param=fpa, param.alias=pa.al, g.alias=g.al )

sv <- csv( list( svc1 = svc1 ) ) # this is our composed ‘csv’ semivariogram object

###### fit the semivariogram model:

start <- param( c(5,10000,0.7), # starting ‘param’eter object

nm = c("sill.elliptical.pwlinear.global","range.elliptical.pwlinear.global",

"q.elliptical.pwlinear.global"),

sem = c("sill","range","q") ) # parameter semantics

smp <- NULL

if (needs.smp.data(sv)) # generate a priori nodes for quasi-monte carlo integration

# the ‘Rmax’ argument must be sufficiently large!

smp <- smp.data(d, Rmax=1.7*max(getrange(sv,start))/2, N=5000)

svmfit <- svm(sv,d=d,param=start,smp=smp,trend=FALSE) # fit the model

print(summary(svmfit))
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a)

c)

b)

A1 A1

A2

Figure 5: The situation of the simulated dataset with local anisotropy: Two independent subpro-
cesses on A1 and A2 are considered (left). The curves represent the paths for which semivariograms
are shown in figure 6. The sketch at the right visualizes the directions of local anisotropy.

Nodes are generated a priori for quasi-Monte Carlo integration and stored in a smp.data object.
Fitted semivariogram models are represented by a svm object, which contains information on
parameter estimates and other results of mean squared error minimization trials. (They are handled
in a similar way as fitted linear models in R.)

3.4 Implementation of a GIS Interface

The ArcView/MoGeS interface performs geostatistical modeling in four steps:
Export data: Select a set of points and corresponding data from a point theme and its database
or table (in ArcView terminology) and convert it to a text file format that can be read by MoGeS.
Specify a semivariogram model: Select semivariogram models, and link covariables with fields
in the theme’s database. If desired, assign fixed values to parameters or identify parameters.
Fit the semivariogram model: Choose starting parameter values, and perform the fitting
through a call to the R environment. See figure 3 for a screen shot and figure 4 for an exam-
ple of R code generated by the ArcView/MoGeS interface.
Perform kriging: Select measurement and prediction locations, export the corresponding data
and perform kriging by calling the R environment.
The ArcView/MoGeS interface is a collection of AVENUE scripts that perform these tasks. It
is accessible through commands added to the Theme menu (see figure 3). The scripts of course
do not cover the complete MoGeS functionality available within R. Nevertheless, the problems
mentioned above can be solved more easily than by hand, since R code is generated and executed
automatically, and a user who is familiar with R will be able to add flexibility by modifying this
code or doing additional analyses using the whole spectrum of R and MoGeS functions.
The AVENUE scripts model parameter vectors, names, aliases and semantics just as MoGeS does,
however as seperated lists rather than object classes or names vectors.
In its current implementation, the ArcView/MoGeS interface strongly depends on the MoGeS
implementation (i. e. its function identifiers, argument names etc.), which makes it very sensible
to small changes in MoGeS. This could be overcome by using a meta-language for geostatistical
modeling that makes for example model specifications independent of the actual implementation
that executes it.

4 Application: A Simulated Dataset in Complex Geology

We consider a Gaussian process Z on D = [0, 1]2 made up of two independent subprocesses Z1 on A1

and Z2 on A2 with location-dependent directions of anisotropy φ(s) (see figure 5 for illustration).
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Figure 6: Left: Empirical semivariogram and the fitted spherical semivariogram with sill 1.90 and
range 0.04.
Right: The fitted “true” semivariogram model, evaluated along the three paths shown in Figure 5:
a) following the local direction of anisotropy in A1; b) orthogonal to anisotropy in A1; c) following
anisotropy in A2.

We select a constant mean m = 5 and elliptical semivariograms with a piecewise linear kernel
function and parameters θT1 = (σ2

1, a1, q1, b) = (1, 0.2, 0.6, 0.6) on A1 and θT2 = (0.8, 0.1, 0.4, 0.95)
on A2, and on A2, we also add a nugget effect with parameter σ2

nug(2) = 0.4. The directions of
anisotropy on A1 and A2 are defined by polynomials and visualized in figure 5.
A geologic setting that hosts such a process could for example be the following: Suppose that Z
represents some (lithogenic) soil property. On A2, geologically young river sediments with strong
fabric orientation down-stream and high local irregularity host the subprocess Z2 with analogous
properties (anisotropy with q2 = 0.4, small range, nugget effect). On A1, things are smoother
(a1 = 2a2, no nugget effect), but oblique sediment layers with folding structures originate an
anisotropy (q1 = 0.6).
A total of n = 259 locations was generated, 170 of which are uniformly distributed over A1, and
the remaining 89 are uniformly distributed over A2. Then realizations of Z at these points were
simulated using a Cholesky decomposition of the covariance matrix.
Kriging was performed on a 60 × 60 grid using 10 000 a priori nodes. The computation of all the
kriging predictions presented below took about a quarter of an hour in total, and each fitting trial
a few minutes, depending on the number of iterations needed.
For comparison with more sophisticated models, we fitted stationary models with and without
anisotropy, first of all the spherical semivariogram model using four different starting values. All
trials succeeded and yielded practically the same estimates, namely a sill of 1.90 and a range of
0.039 (mse: 32.08). (See figure 6 for a comparison with the empirical semivariogram.) However,
fitting an elliptical semivariogram with a piecewise linear kernel function (with b = 0.7) and fixed
direction of (geometrical) anisotropy did not yield consistent results for various choices of starting
values and (fixed) orientation parameters.
Finally we fitted the “true” semivariogram model. Due to the high number of parameters, fitting
took several steps, fixing some parameters at each step.
Comparing fitted and true parameters,

σ2
1 a1 q1 b1 σ2

2 a2 q2 b2 σ2
nug(2)

fitted 1.70 0.13 0.55 (0.70) 2.27 0.12 0.34 (0.70) 0.06
true 1.00 0.20 0.60 0.95 0.8 0.10 0.40 0.95 0.40

we observe that the fitted nugget effect almost vanishes, the sill parameters were overestimated,
axis ratios were estimated quite well, and the range in the smoother area A1 was underestimated.
Overestimation of the sill may be caused by an additional randomness due to integration errors
during simulation.
See figure 6 for some sample plots of the fitted semivariogram along the paths shown in figure 5.
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Figure 7: Kriging surfaces using the true semivariogram (top left), using the fitted generically
stationary model (top right), using a fitted spherical semivariogram (sill 1.90, range 0.039; bottom
right), and using a spherical semivariogram with sill 1.90 and range 0.13 (bottom left).

Note that these plots are representative in the sense that any semivariogram evaluation along
anisotropy direction within A1 will look like graph a), etc. This is due to the generic stationarity
property of elliptical semivariograms.
Our next aim is to compare kriging predictions obtained with different fitted models. We use the
following semivariograms:

• the true semivariogram,

• the fitted semivariogram consisting of piecewise linear elliptical semivariograms on A1 and
A2 plus a nugget effect on A2,

• the fitted spherical semivariogram with sill 1.90 and range 0.39, and

• a spherical semivariogram with sill 1.90 and the (more reasonable) range 0.13 taken from the
fitted semivariogram with local anisotropy.

Kriging results are shown in Figure 7. It can clearly be seen that both predictions based on
spherical semivariograms do not reflect the strong anisotropies present in our dataset, whereas the
fitted generically stationary model with anisotropies leads to predictions that are very close to those
obtained with the true semivariogram.

5 Conclusions

The construction method presented in this work has shown to be a useful instrument for incorpo-
rating knowledge of local geology as stored in a GIS into semivariogram models. Many situations
of local anisotropy can be modeled using the class of elliptical semivariograms, which was studied
in detail. Using the code developed for the present work, such models were successfully fitted, and
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in an example situation it could be seen that the corresponding kriging results are also consistent
with our knowledge of local anisotropy of the process, in contrast to isotropic or geometrically
anisotropic semivariograms.
The study of the class of elliptical covariogram models motivated the introduction of the concept of
generic stationarity. This concept reflects our belief in the existence of natural laws that determine
a process’ distribution law depending on local geology. The less knowledge of local geology is
necessary to determine the distribution law, “the more stationary” is the process. Thus, generic
stationarity becomes a means for stationarizing instationarity conditional on local geology.
First practical results were obtained by modeling the influence of local geology by means of generi-
cally stationary semivariograms in some cases of particular interest. However, it remains for future
work to investigate and apply other generically stationary models to geological problems involving
data from GIS.
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