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Abstract 

We show that adapting the mineral processing to the local ore fabric (mineralogy and micro-
structure) can substantially improve the profitability of the mine, however, only a proper geoma-
thematical methodology using conditional expectations of profits rather than direct measure-
ments can avoid losses. Based on geometallurgical exploration data and processing models po-
tential gain and actual gain of this approach can be quantified before exploitation commences. 
Rules for optimal decisions, estimators for the gain of this approach from exploration data, and a 
method to compute the optimal geometallurgical sampling density are presented.  
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1 Context 

We investigate the possibility of adaptive mineral processing in an ore deposit based on a spatial 
dataset of Mineral Liberation Analyzer (MLA) measurements.  

Unlike a classical grade measurement the MLA provides very detailed information on the mine-
ralogy and fabric of the ore, e.g. information on 

 mineral composition of the ore 

 grain sizes distributions of individual minerals 

 phase interfaces 

 mineral association 

Depending on the micro fabric of the ore different processing parameters and different 
processing paths might lead to different results. E.g. if the target element is bound in a different 
mineral with a different density or if we have empty minerals with densities similar to those of 
the target minerals in the ore we will get different gravity separation results. Different grain sizes 
will lead to different particle diameter below which milling will ensure the liberation of the tar-
get mineral. Depending on phase interfaces separation during milling might occur along grain 
boundaries or by cracking within one or the other mineral. I.e. we might have well separated 
minerals with a clearly different density or contaminated grains with not so clearly different den-
sities and a not so good separation. The general intergrowth of the target mineral might ease or 
complicate its liberation e.g. by enclosing the target mineral in another hard to break mineral or 
by having it located along grain boundaries. The presence of difficult to mill minerals e.g. very 
ductile material might change the energy consumption of milling to a specific size. Thus even 
material with the same grade subjected to the same type of processing will result in a different 
recovery.  

The general idea of geometallurgy is to optimize the processing through such detailed informa-
tion on the mineralogy and fabric of the ore. The aim of this paper is to develop and illustrate 
some geomathematical basics for this approach. 

 
Figure 1:  The left panel shows the measured mineral abundance of the value mineral along the 

transect. The right panel shows the observed mass percentages below given sizes observed for these 
samples. We can see a substantial variation of grades and grain size distribution along the transect 

in this deposit. 
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2 Example Dataset and Processing model 

As an illustration example we will use 29 datasets of MLA measurements from an MLA 600F 
from FEI done in XBSE mode on polished thin section surfaces of mineralized ZechsteinKupfer-
schiefer and sandstone samples received from KupferschieferLausitz GmbH (KSL), which were 
taken along a vertical transect through a Cu-Ag deposit. The Permian Kupferschiefer is a thin 
unit of marine bituminous marl that conformably overlies sandstones of the Pre-Zechstein and 
grades upward into dolomitic limestones (Speczik et al., 1995; Vaughan et al., 1989). It occurs 
from England through the Netherlands, Germany into Poland, the Baltic states, and Belarus and 
covers an area of approximately 600 000 km² (Kopp et al., 2008). Strataboundpolymetallic base 
metal mineralization is locally developed in this sedimentary succession, especially along the 
southern and southwestern perimeter of the distribution of the Kupferschiefer. Mineralization is 
structurally - and lithologically - controlled. The metallogenesis of the Kupferschiefer-type mi-
neralization remains a contentious issue, with various models advocated by previous authors.  
Excellent summaries of the available models have been provided by Vaughan et al. (1989) and, 
more recently, by Hitzman et al. (2010). In the Spremberg-Graustein area of Lower Lusatia, 
Germany, Kupferschiefer is situated in depths between 800 and 1500 m. Economically signifi-
cant mineralization is evenly distributed in the Pre-Zechstein sandstone (31.4 %), in the marine 
bituminous marl (45.7 %) and in the dolomitic limestone (22.9 %) and has an average thickness 
of 2.4 m. The main copper ore minerals are chalcocite/digenite, bornite and chalcopyrite (Kopp 
et al., 2008).  

Twenty-nine polished thin sections where analyzed with an MLA 600F from FEI, which is a 
scanning electron microscope equipped with a field emission source and two energy dispersive 
Bruker X-ray spectrometers. The instrument is used to acquire backscattered electron (BSE) im-
ages and compositional information from a large number of particles. The MLA 600F is able to 
characterize mineral grains ≤ 0.1 µm in size. The MLA software offers different measurement 
modes, varying from purely BSE-based area-analysis to an X-ray analysis point counting tech-
nique (XMOD) (Fandrich et al., 2007). The XBSE measurement mode was used in this investi-
gation analysis of mineralogically and texturally complex surface areas of polished thin section 
surfaces.  

The mass portion of one ore mineral and its corresponding grain size distribution functions as 
provided by the MLA are shown in Figure 1. For the sake of simplicity and confidence we will 
focus on one mineral only.  

Since in this paper we are focused on mathematical aspects of the optimization of mineral 
processing and not on the optimization of a specific mining operation we will use a very simpli-
fied one parametric processing model:  

 The target element is in only one of the minerals.  

 Each grain would be liberated (i.e. separated from other minerals and thus accessible to 
processes like flotation) if milling to the apparent grain size in the 2D thin section as re-
ported by the MLA. This is obviously an oversimplification of the relationship, because a 
complex stereological relation involving properties of the milling process relate the ap-
parent 2D grain sizes with the actual liberation sizes in an actual milling process.  

 The processing costs are dominated by the energy consumption of milling, which is mod-
eled as proportional to 1/diameter, which corresponds to the increase in inner surface for 
decreasing diameter.  

 The extracted material and thus the monetary gain is proportional to the amount of the 
value mineral liberated by milling.  
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In this simple model the monetary gain per unit mass only depends on the mass distribution 
function F of the grain sizes on that target mineral and on the grade m (for mass) of the value 
mineral: 

ܸሺݏሻ ൌ ܽଵ݉൫1 െ ሻ൯ݏሺܨ െ
ܽଶ
ݏ
െ ܽଷ 

whereܽଵ is the market price of the mineral, m is the mass percentage, ܨሺݏሻ  the portion not libe-
rated if milling until size ݏ ,ݏ is the chosen “size” to which we mill the material, ܽଶ is the propor-
tionality factor for milling costs and ܽଷ the other costs of mineral processing (here set to 0). We 
assume that parameters of the function (here ܽଵ, ܽଶ, ܽଷ) are known, that ore specific quantities 
(here m and F(s)) can be estimated from the MLA measurements and that process parameters 
(here ݏ) can be chosen. The precise form of this value function is not important for the general 
aspects of the paper, it is just the function used in the example. It is only important that such a 
function is known for the processing problem under consideration. Our assumption also implies 
that the average gain for mixed material processed at the same ݏ is the average of gains com-
puted for the components. This is however only true if different sorts of ore do not interact in the 
sense that the processing effects on each portion of material is not changed by further added dif-
ferent material. Without this basic assumption the mathematical treatment gets more compli-
cated, whenever mining blocks are considered.   

In this setting optimizing the mineral processing is reduced to finding a good value for the 
process parameters (here ݏ for the grain size to which we mill) for each portion of material 
processed together.  

Figure 2 shows the value functions ܸሺݏሻ computed for the parameters observed in each of the 29 
samples for the illustrated example. The red crosses show the optimal particle size and the cor-
responding maximum achievable monetary gain. The blue line and the blue cross show the aver-
age gain if all types of ore would be processed with the same parameter ݏ and the same corres-
ponding optimal joint particle diameter. The red horizontal line represents the average ܸሺݏሻ if 
always the optimal value would be taken.  

The value of different types of ore along the transect vary substantially. Ore with higher grades 
provide much higher gain. For higher grade ore with the same grain size distribution it is typical-
ly worth to invest more into the milling, since the Maximum of ܸሺݏሻ is characterized by a zero 
derivative ܸ′ሺݏሻ ൌ మ

௦మ
	െ	ܽଵ	݉	݂ሺݏሻ, where  a larger value of m automatically shifts this value to 

the left, since the derivative 
మ
௦మ

 of the milling energy is a decreasing function of the milling target 

size. The red line is about 20% higher than the blue line, which would correspond to a 20% in-
crease of the gross yield for a mining operation using always the best milling parameter with 
respect to a mining operation always using the best joint milling parameter. Every individual 
mining block would provide a larger yield.     
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Figure 2:  The black curves correspond to the ܸሺݏሻ computed for the observed mineralogy and mi-

crofabric of the specimen. The blue curve corresponds to the average. The red crosses locate the 
optimal milling parameter ݏ for each specimen blue cross the optimal milling parameter for the 

average. The blue cross locates the optimal milling for the average, i.e. the optimal milling parame-
ter, when everything is processed in the same way.  

This corresponds to a mathematical theorem: 

Theorem 1: 

For an objective function ܩሺݏଵ, … , :ሻݏ ൌ ∑ ܸሺݏሻ

ୀଵ   it holds: 

max
௦
,ݏሺܩ . . . , ሻݏ  max

௦భ,…,௦
,ଵݏሺܩ . . . , 	ሻݏ

with equality if and only the maxima are the same for all ݅, ݆ 

argmax
௦

ܸሺݏሻ ൌ argmax
௦

ܸሺݏሻ 

Proof: A maximum over a larger set of possibilities is always greater equal. 

I.e. one can show mathematically that the optimal processing always provides a better output 
than applying the same mineral processing to the complete deposit. Clearly in practice the first 
theorem does not consider several problems: 

 There are the higher investment costs for processing plants capable of adaptive 
processing.  

 The microfabric of the ore is never completely known. 

 There are measurement costs for obtaining the microstructural information.   

We will come back to these problems. 

We call the expected value of the difference ܷ:ൌ ሾmax௦ܧ ܸሺݏሻሿ െ max௦ -ሻሿthe upside poݏሾܸሺܧ
tential of adaptive processing, because it is the value that would be possible in case of perfect 
information at no additional cost. 
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3 Pitfalls of the “measured microfabric” approach 

To apply adaptive processing sounds at first like a no brainer as, e.g., an increase of the gross 
yield by 20% before the subtraction of the other costs of say 80% could easily correspond to a 
doubling of the net gain.  However reality is not so simple. In reality we do not know the true 
mineralogy and microfabric of the ore processed. We only know the mineralogy and microfabric 
of a very small thin section of a sample somewhere near the processed material.  

To model this effect of only having a nearby measurement, we will apply in our example model 
the processing parameters optimized for the prior measurement along the transect instead of the 
optimal choice for the sample itself. We quantify the effect using the following general theorem 
allowing estimating the effective value of any adaptive processing decision rule from geometa-
lurgical exploration data.  

Theorem 2: 

Let denote ܸሺݏሻ an unbiased estimator of ܸሺݏሻ	the value estimated from an observed microfa-
bric, i.e. ܧሾ ܸሺݏሻ|ܯሿ ൌ ܸሺݏሻ for every microfabric ܯ and ̂ݏ be any random variable providing a 
choice on the processing parameters ݏ, where ܸ ሺݏሻ is independent to ̂ݏ conditional to the micro-
fabric (I.e. ̂ݏ does not contain any information about the prediction error not already contained 
in the actual sample). Then it holds that     

ൣܧ ܸሺݏሻ൧ ൌ ൣܧ ܸሺ̂ݏሻ൧	

Proof: ൣܧ ܸሺ̂ݏሻ൧ ൌ ܧ ቂൣܧ ܸሺ̂ݏሻ|ܯ൧ቃ ൌ ሾܧ ܸሺ̂ݏሻሿ	

I.e. the computed value of the second sample processed based on a choice on the processing giv-
en ̂ݏ computed from some observations of different samples is an unbiased estimator of the ac-
tual value that would be achieved by such a procedure. In our case the approach would thus give 
an unbiased estimate of the actual average value we would get, when processing the material at 
the observed locations with choice from a similar distance distribution. A paired sampling strate-
gy like in Boogaart 2010 is thus a useful tool to construct unbiased estimators for the perfor-
mance of decision strategies in mining operations. 

The result of applying this to our example dataset is shown in Figure 3.This more realistic strate-
gy would not provide a gain but a loss reducing the yield by approximately 25%. In conclusion a 
naive: “measure and use the apparent optimal choice approach” can lead to a great loss in the 
mining operation, with respect to a traditional “treat all the same” approach.  
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Figure 3:  The left panel shows the value as a function of space. The right panel shows the value as a 
function of the processing parameter. Crosses mark the effective gain we would get with three dif-

ferent strategies: The black lines (mostly covered by blue) correspond to the optimal choice, the 
blue line to the same choice for every location. The magenta line corresponds to a choice based on 
the previous measurement. For several cases this third choice is bad because the prior measure-

ment is substantially different from the actual material. The horizontal lines show the average re-
sult. 

4 Problems with Estimated choices 

This last observation might seem very surprising, since the measured microfabric and mineralo-
gy provide an unbiased estimator of a true microfabric function ܯሺݏሻ:ൌ ݉ሺ1 െ  ሻሻ of aݏሺܨ
block, like an ordinary kriging predictor of the microfabric would yield an unbiased prediction 
and the gain ܸሺݏሻ depends linearly on ܯሺݏሻ, i.e. ൣܧ ܸሺݏሻ൧ ൌ ܸሺݏሻ. Should this not imply that the 
choice is at least somehow on average the same as the optimal one? However the precise theo-
rem is: 

Theorem 3: 

For the conditional expectation ܸ ሺݏሻ: ൌ  :ሿ given the data it holdsܽݐܽܦ|ሻݏሾܸሺܧ

:ݏ̂ ൌ 	max
௦

ܸሺݏሻ 

provides the best possible choice on s in the sense that ̂ݏ gives  a better choice than all alterna-
tive Estimators ̆ݏ which can be written as a function of the data: 

ൣܧ ܸሺ̂ݏሻ൧  ൣܧ	 ܸሺ̆ݏሻ൧	

Proof: 	ܧሾܸሺ̂ݏሻሿ  ሿ൧ܽݐܽܦ|ሻݏሾܸሺ̆ܧൣܧ	 ൌ  ሻሿݏሾܸሺ̆ܧ

This equivalence to the conditional expectation is however something completely different than 
unbiasedness for a given ܸሺݏሻ considered as a parameter.  

The problem is illustrated in figure 4. 
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Figure 4: The figure shows one true conditional expected gain and curves simulated unbiasedly 
around this curve, i.e. the expectation of all these curves was the given curve. The black line 

represents the conditional expected gain. 

Due to the variation around the conditional expectation, the location of the maximum varies. 
Since always those ݏ are preferred, for which the function is high by chance. However a wrong s 
will always imply a lower effective yield, i.e. the actual value of the black curve given the choice 
is always below the optimal choice. These effects thus do not cancel out. Any variation around 
the conditional expectation will lead to a decrease in performance of the choice.   

On the other hand there is an interesting effect: The actual prediction error for the true perfor-
mance is irrelevant, only the conditional expectation itself matters. The theorem allows the ex-
plicit construction of the optimal processing choice. The theorem also shows, which microfabric 
parameter should be predicted and how it should be predicted: Since the final choice needs the 
conditional expectation of the value of a processing choice, the value of the choice itself should 
be the target of the estimation.   

5 Practical choices 

In our example case we do not have an explicit way of constructing the conditional expectation 
and restrain ourselves to a linear approximation to it, through a regression model, in this case 
done for every choice separately. Figure 5 shows the unclear dependence on the value for the 
previous location along the transect with a corresponding regression line in two examples: 
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Figure 5:  The figure shows the expected value for a sample (a) and its subsequent sample (b) for 
two different possible choices of ݏ. The regression lines are not on the ݕ ൌ -line because in regres ݔ
sion analysis the errors are asymmetrically assigned to the dependent variable only. The prediction 
gain ܸ ሺݏሻ is thus a somehow weighted average of the “measured” ܸሺݏሻ and the average ܸሺݏሻ.  This 

effect is known as the “regression to the mean effect”. 

We have applied this simple strategy to a discretized set of possible ݏ. Since the “observations” a 
and the “results” b have nearly the same mean for a linear regression equation ܾ ൌ ܣ   we ܽܤ
always have ܣ ൌ തܾ െ ܤ തܽ ൎ തܾ െ തܾ	ܤ ൌ തܾሺ1 െ  ሻ. The regression is thus a convex combinationܤ
of the overall mean and the measurement. The regression coefficient ܤ can be interpreted as a 
number between 0 and 1 showing the degree of relying on the data. If the ܤ is 0 the data is not 
used at all and the predicted gain and thus the choice would be the same as for the mean predic-
tion. If	ܤ ൌ 1 the predicted gain would be the measurement and we would get the same result as 
in the perfect information situation. Assuming that both gain curves look approximately like a 
parabola in the area of interest a convex combination of their linear derivatives would move the 
point of choice linearly. Since the actual value is then taken from a parabola the errors are ap-
proximately proportional to the squared error. And thus the measure of determination ܴଶ meas-
ures the portion of the maximum upside potential we might gain, which is approximately 14% in 
both cases.  According to these simplified models we would expect an increase in average 
processing gain of ܷ ∗ ܴଶ ൌ 20% ∗ 14% ൌ 2.8%.   

Figure 6 shows the corresponding predicted curves along with the corresponding choices on the 
milling size.  
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Figure 6:  Green lines show the decision values predicted by the linear model and the correspond-

ing milling choices as green crosses. Accordingly the actually achieved gains are represented by the 
cyan crosses. The green horizontal line shows the overall gain which is only slighly above the blue 

“treat everything in the same way” line.   

Applying the estimation based on theorem 2 to this approach we estimate an improvement of 
3.9% in gross yield with respect to the classical ‘treat everything the same’ approach. The dra-
matic gain of 20%	provided by the first model was not realistic because it wrongly assumed that 
we know the microfabric perfectly well. These 20% are somehow the limit of what increase we 
can reach with a perfect adaptive processing strategy based on perfect information. However, our 

information only allows us to exploit 
ଷ.ଽ%

ଶ%
ൌ 19% of this upside potential, which is slightly more 

than the 14% expected from the simplified approach with ܴଶ.  

6 Finding optimal sampling distances 

If the current sampling distance only allows to exploit 19% of the potential gain, because ܴଶ is 
small corresponding to a bad prediction of ܸሺݏሻ, the problem might be that we do not have 
enough measurements of the fabric. The question must be, what might be the right number of 
measurements. To compute this we assume to predict the conditional expectation of ሺݔ,  , ሻݏ
where ݔ is a spatial location and ݏ the processing parameter with a simple kriging predictor 
(Cressie 1993) based on values ܸሺݔ,  .ݏ computed based on MLA measurements at locations	ሻݏ
If ܸ ሺݔ,  ሻ is an unbiased estimator of the gain using processing parameter s on the measuredݏ
data at location xi as in theorem 3 the upside potential ܷ of mean gain using an adaptive mineral 
processing described by a value function ܸሺݏሻ can be estimated by  

ܷ ൌ
1
݊
max

௦
ቀ ܸሺݔ, ሻቁݏ



ୀଵ

െ	max
௦

1
݊
 ܸሺݔ, ሻݏ


ୀଵ

.	

ܷis biased but consistent. The upside potential is the mean increase in gain if everything is 
processed optimally with respect to perfect information. Chapter 5 suggests that the portion of 
the upside potential we can realistically achieve with a given sampling density corresponds to the 
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mean ܴଶ of the prediction.  In this case the prediction ܴଶ corresponds to the kriging predictor 
variance (I.e. variance of the field – kriging error variance) divided by the variance of the field 
(I.e. of the predicted value). This however would in a simple kriging situation only depend on the 
correlogram of ܸሺݔ,  ሻ and the sampling plan. For the sake of simplicity we assume that we haveݏ
a single correlogram ܿሺ݄ሻ	for all ܸሺݔ,  ሻ independent of s in the area of interesting values ofݏ
processing parameters and a square sampling plan. Obviously a nugget effect ܰ would prevent 
the correlation of the prediction on the actual value to grow above ሺ1 െ ܰሻ. The practical upside 
potential would thus be limited by ܷሺ1 െ ܰሻ in case of complete sampling. Having such a corre-
logram would allow doing a numerical computation of ܩሺ݀ሻ	defined as the spatial average of the 
prediction ܴଶ  as a function of the measurements per area unit. Unfortunately our example data-
set was not large enough to estimate a correlogram. Figure 7 shows these calculations for an ex-
ample with a spherical correlogram with range 1 and nugget 0.1.  

 
Figure 7:   The left panel shows a numerical computation of the spatial average ܩሺ݀ሻ of the predic-
tion ܴଶ for a spherical correlogram with range 1 and nugget 0.1 using a rectangular measurement 

grid. The right panel shows the numerical derivative ܧሺ݀ሻ ൌ   .ሺ݀ሻ of that function′ܩ

Let’s consider the density d of measurements per unit area.  Adding one measurement would 
cost a price p and provide additional gain, which would in our simplified first model estimate by 
ሺ݀ሻܧ ∗ ܷ. An increase of the measurement density is thus reasonable as long as ܧሺ݀ሻ  


 and 

thus the apparently optimal measurement density is given by ିܧଵ ቀ

ቁ, depending on the price of 

the measurements, the estimated upside potential ܷ and the correlogram's of the ܸሺݔ,  ሻ. Theݏ

actually achievable gain would be estimated by ܸௗ௧ௗ ≔ ܩ ൬ିܧଵ ቀ



ቁ൰. If such value exceeds 

the additional investment costs I for plants capable of adaptive processing, adaptive processing 
increases the value of the mine. 

Clearly this last step is based on many assumptions and needs to be tested against larger datasets 
in which the correlograms can be estimated and the performance checked against a performance 
estimate based on theorem 3.  
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7 Conclusions 

The loss of  25% through a naive “use the measurements directly” approach might explain, why 
adaptive processing is not yet an established method. Only a proper theoretical foundation com-
bined with informative predictive models for ocal microfabric and mineralogical characteristics 
as well as corresponding processing results can provide sufficient information for an adaptive 
approach to mineral processing. However, if these ingredients are present along with a sufficient 
dense measurement grid a huge upside potential of e.g. 10% of gross yield in our example depo-
sit might be possible, which would correspond to a dramatic increase in capital return. Optimiza-
tion of mineral processing through such geometallurgical methods should thus gain more interest 
in the geomathematical community.  

Acknowledgments  

The authors thank Kupferschiefer Lausitz GmbH (KSL) for the kind support.  

  



The Value of Adaptive Mineral Processing based on spatially varying Ore Fabric Parameters 
 

 1

References 

Brongersma-Sanders, M. (1966): Metals of Kupferschiefer supplied by normal sea water: Ge-
ologische Rundschau, v. 55, p. 365-375. 

Boogaart, K.G., Wellmer, F.-W. Cutoffs and selectivity (2010): How to estimate the proc-
essable content of a deposit in the exploration phase, Proceedings of IAMG 2010, Budapest  

Cressie, N (1993): Statistics for spatial data, Wiley  

Fandrich, R., Gu, Y., Burrows, D., and Moeller, K. (2007): Modern SEM-based mineral lib-
eration analysis: International Journal of Mineral Processing, v. 84, p. 310-320. 

Gu, Y. (2003): Automated scanning electron microscope based mineral liberation analysis: an 
introduction to JKMRC/FEI mineral liberation analyser: Journal of Minerals & Materials 
Characterization & Engineering, v. 2, p. 33–41. 

Hitzman, M.W., Selley, D., and Bull, S. (2010): Formation of Sedimentary Rock-Hosted 
Stratiform Copper Deposits through Earth History: Economic Geology, v. 105, p. 627-639. 

Kopp, J., Herrmann, S., Höding, T., Simon, A. and Ullrich, B. (2008): Die Kupfer-Silber-
Lagerstätte Spremberg-Graustein (Lausitz, Bundesrepublik Deutschland) – Buntmetallanrei-
cherungen an der Zechsteinbasis zwischen Spremberg und Weißwasser: Zeitschrift der geolo-
gischen Wissenschaften, v. 36, p. 75 – 114 

Jowett, E.C. (1986): Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rot-
liegendes brines during Triassic rifting: Economic Geology, v. 81, p. 1823-1837. 

Rentzsch, J. (1974): The “Kupferschiefer” in comparison with deposits of the Zambian cop-
perbelt. In: P. Bartholomé, Editor, Gisements Stratiformes et Provinces Cuprifères, Soc. Géol. 
Belgique, Liège (1974), p. 403–418.  

Speczik, S., Bechtel, A., Sun, Y.Z., and Püttmann, W. (1995): A stable isotope and organic 
geochemical study of the relationship between the Anthracosia shale and Kupferschiefer min-
eralization (SE Poland): Chemical Geology, v. 123, p. 133-151. 

Vaughan, D.J., Sweeney, M.A., Friedrich, G., Diedel, R., and Haranczyk, C. (1989): The 
Kupferschiefer; an overview with an appraisal of the different types of mineralization: Eco-
nomic Geology, v. 84, p. 1003-1027. 

 


