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Abstract

The problem to predict a polar unit vector at a given location from corresponding
geocoded data is discussed and a general solution is presented including an explicit jus-
tification in terms of mathematical assumptions concerning stationarity/homogeneity
and isotropy. The data are modelled by a stationary random field, and the spatial
coherence is represented by modified multivariate variograms and covariance functions.
Various types of isotropy assumptions can be distinguished, e.g. (i) isotropy of space,
(ii) isotropy of measurements, (iii) isotropy of the random process, (iv) geographical
isotropy of the random process, and lead to different simplifications of the general
cross–covariance function. While the assumption of isotropy of measurements leads to
great simplifications, but seems to be rather artificial, the assumption of geographical
isotropy of the process implies less simplification but seems appropriate in many ge-
ological situations. Different kriging procedures referring to different assumptions of
isotropy are applied to a set of unit surface normal vectors and the effects of these
varying assumptions are empirically checked, in particular the surfaces modelled form
the observed and estimated normal vectors are compared with special respect to the
measure of confidence in the estimates provided by the method.
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Introduction

The Problem

The actual problem is to predict a polar unit vector, i.e. a direction, at a given location from
corresponding geocoded data like unit surface normal vectors. More specifically, our interest
is in estimating a random manifold–value function of space U : IRp 7→ M ⊂ IRq given data
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(xi,u(xi)) ∈ IRp ×M, i = 1, . . . , n, where M is generally not a linear manifold. Since our
special interest is in directions, the manifold M = Sq−1 = {v ∈ IRq | ‖v‖ = 1} for regionalized
directions.

Beyond spatial prediction we would like to provide a measure of confidence in the esti-
mates. Therefore, the data u(xi) ∈ Sq−1 ⊂ IRq, xi ∈ D ⊂ IRp, i = 1, . . . , n, shall be modelled
by a random field {U(x),x ∈ D}, and the spatial correlation is represented by modified mul-
tivariate cross–variograms and cross–covariance functions, respectively. The method of choice
is vector or co–kriging, respectively.

However, for spheres and other non–linear manifolds, known methods of linear prediction
like kriging cannot be applied without some relaxations. Generally, the predicted objects
obtained by this method will not be directions, i.e. being defined as linear combinations of
elements of non–linear manifolds they will not be an element of this manifold themselves.
However, the estimator should be close to the manifold if the prediction is sensible in practical
terms.

Different kriging procedures corresponding to different types of isotropy are applied to sets
of unit surface normal vectors and the effects of these varying assumptions are empirically
checked, in particular the surfaces modelled from the observed and estimated normal vectors
are compared with special respect to the measure of confidence in the estimates provided by
the method.

Thematic vs. Geometric Vectors and Isotropy Assumptions

It should be noted that the vectors being observed or estimated by multivariate or co–kriging
constitute geometric entities. A thematic vector of e.g. geophysical or geochemical properties
conveys its information independently of the order of its components, while the information
is changed if the components of a geometric vector are re–ordered. Therefore, kriging of
geometric unit vectors has features to be distinguished from general vector–kriging. One of
these features is that various types of isotropy assumptions can be distinguished

• isotropy of space,

• isotropy of measurements,

• isotropy of the random process,

• geographical isotropy of the random process

Any assumption of isotropy corresponds to a different physical understanding of the process
and imposes different constraints on the possible variograms and covariance functions, and
the kriging weights, and leads to different simplifications of the general cross–covariance
function and the kriging procedure, respectively.

Kriging in Embedding Spaces

To apply kriging, an appropriate mapping f : M 7→ IRq into an embedding space is defined,
which preserves the canonical measure of distance in M and reproduces it correspondingly
in the embedding space.



The mapping f : Sq−1 7→ IRq into the embedding space IRq is canonically provided by

f(u) = u, preserving the measure of distance ‖f(u1)− f(u2)‖ = 2 sin
6 (u1,u2)
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two directions is the common canonical measure for their distance on the sphere as well as
in the embedding space.

Then, kriging will be performed in embedding space and applied to the transformed
objects

Z(xi) := f(U(xi)) = U(xi)

The estimator can be projected onto the manifold by normalisation

Û(x0)

‖Û(x0)‖

Given a model for the expectation E[Ui(xk)] = µ+
∑

?, the

• best E[(Ûi(x0)− Ui(x0))2]→ min , i = 1, . . . , q

• linear Ûi(x0) =
∑
jk λijkUj(xk)

• unbiased E[Ûi(x0)− Ui(x0)] = 0

estimator Û(x0) of U(x0) is well defined.
The kriging weights λijk are determined if the cross–covariance function

C(h) = (Cov(Ui(x), Uj(x + h)))i,j=1,...,q ∈ IRq×q

of the random field is known. Alternatively, the cross–variogram or generalized cross–
covariance functions may be applied.

The result Û(x0) of kriging in the embedding space is generally not an element of the
manifold. There are two different ways to use Û(x0) as a preliminary result. We could just
project Û(x0) to the point of the manifold, which is closest to it. Since the true U(x0) belongs
to the manifold, and the predicted Û(x0) is close to the true value U(x0), its projection onto
the manifold should be close to the true value, too. Some special optimality criterion can be
used to show that this prediction is actually sensible. The second possiblity is to interpret
the result of kriging directly. Û(x0) is not a member of the manifold itself, but it is close to
the manifold. We can determine those points of the manifold which are close to Û(x0) and
therefore probable values. We can investigate how well the datum at the location x0 can be
predicted and whether there are ambiguities or not.

Notation

Z(x), U(x) denotes a stochastic process (field) of regionalized vectors or unit vectors, re-
spectively, in q–dimensional space IRq assigned to locations x in p–dimensional geographic
space IRp, typically p, q ∈ {2, 3, 4}. O(p) denotes the orthogonal group of dimension p, which
is the group of rotations and orthogonal reflections.



Kriging Subject to Isotropy

Isotropy of Space

All finite–dimensional marginal probability laws remain unchanged when the geographic lo-
cations of the measurements are rotated

P (U(σx1), . . . ,U(σxn)) = P (U(x1), . . . ,U(xn)), σ ∈ O(p) (1)

It should be noted that the vectors U(x) are not subject to rotations.
Isotropy of space applies to thematic vectors U, the components of which do not constitute

a geometric entity and maybe re–ordered without changing their information content. The
assumption of spatial isotropy conforms with the conventional assumption of isotropy as
discussed by e.g. Cressie (1993) or Wackernagel (1998).

The assumption of spatial isotropy leads to the general theory of tensor kriging and to
isotropic tensor valued variograms

γij(‖h‖) = E[(Ui(x)− Ui(x + h))(Uj(x)− Uj(x + h))] ∈ IR3×3

In this case a matrix valued (cross–)variogram, which is only a function of the scalar
distance, is required to calculate the matrix–valued kriging weights. Spatial isotropy has
been discussed for instance by Cressie (1993) and Wackernagel (1998).

The assumption of isotropy of space does generally not apply to geometric vectors U, the
components of which constitute geometric entities, and are likely to relate to the geographical
coordinates of the locations, i.e. the components of which cannot be interchanged without
changing their information content. A set scalar quantities, such as chemical composition
data, are likely to have this or no isotropy.

Isotropy of Measurements

All finite–dimensional marginal probability laws remain unchanged when the geometric vec-
tors U(x) are considered with respect to a rotated coordinate system

P (σU(x1), . . . , σU(xn)) = P (U(x1), . . . ,U(xn)), σ ∈ O(q) (2)

Isotropy of measurements implicitly assumes that the geometric vectors may be rotated
independently of their geographic locations. This assumption may be appropriate for geo-
metrical directions which do not physically relate to directions in geographic space. Thus, it
seems rather artificial; it was applied without explicit notion by Young (1987).

Isotropy of measurements transforms to the corresponding isotropy assumption in the
embedding space and additionally implies E[U(x)] = 0 there.

In this case

• the optimality criterion simplifies to

E[‖Û(x0)−U(x0)‖2]→ min



Figure 1a) The simulated data U(x) ∈ IR3, x ∈ IR2 exhibit spatial isotropy without isotropy
of measurements: A clearly preferred direction of the data is obvious while the spatial corre-
lation is the same in any given direction.



Figure 1b) Results of kriging with unit vector data subject to spatial isotropy; green arrows
represent input data set selected form the simulated data shown in Fig. 1a, blue arrows
represent the true (simulated) directions at test sites, red arrows represent the estimated
directions.



• the estimator simplifies to

Ûi(x0) =
n∑
k

λkUi(xk)

• the expectation is known and therefore simple kriging and the covariance function
applies.

• the simplified covariance function

C̃ (xi − xj) = C̃(xi,xj) = trace Cov (U(xi),U(xj))

is sufficient to determine the kriging weights λ.

• a simplified definition of the variogram which allows to use an ordinary real–valued
variogram function can be used for this kind of geometrical vector kriging.

2γ(h) = E[‖U(x)−U(x + h)‖2] ∈ IR

It should be noted that it depends only on the vector difference h ∈ IRp of the mea-
surement locations.

• the kriging weights λk can actually be calculated according to the formulae of simple
kriging

λ = C̃−1c, with ci = C̃(xi − x0) and C̃ij = C̃(xi − xj)

At first sight it seems counter–intuitive that the estimator itself is not an object of the
same kind as the data. However, in case of directions it can be shown that the length of the
estimator is measure of the accuracy of the estimation which actually depends on the data.
Moreover, the estimator satisfies a “strange” optimality criterion, e.g. for directions it reads

λ̃ = argmax
µ̃

E

[
‖Û(x0)‖ cos

(
6)

(
U(x0),

∑
i

µ̃iU(xi)

))]

Thus, the situation of “spherical” kriging is definitely different from real kriging.
The assumption of isotropy of measurements does not apply when the coordinate system

of the geometric vectors is related to the coordinate system of the geographic locations. Then
a phenomenon may be thought of as being isotropic with respect to simultaneous rotation
(or reflection) of both coordinate systems.

Examples of this kind of isotropy are (i) water flow which changes its velocity more rapidly
in the directions orthogonal to the downstream flow direction, since the water flowing has to
go somewhere, or (ii) ... .

Isotropy of the Process

All finite–dimensional marginal probability laws remain unchanged when the geometric vec-
tors U(x) ∈ IRq and their geographic location vectors x ∈ IRp are subject to a common
rotation

P (σU(σx1), . . . , σU(σxn)) = P (U(x1), . . . ,U(xn)), σ ∈ O(p), p = q (3)



Figure 2a) The simulated data U(x) ∈ IR3, x ∈ IR2 display isotropy of measurements
without spatial isotropy: There is no preferred direction in the data, but the spatial
correlation in West–East direction is more pronounced than in South–North direction.



Figure 2b) Results of kriging with unit vector data subject to isotropy of measurements;
green arrows represent input data set selected form the simulated data shown in Fig. 2a,
blue arrows represent the true (simulated) directions at test sites, red arrows represent the
estimated directions.



The assumption of process isotropy is adequate when geometric and geographic vectors
are considered with respect to the same spatial coordinate systems, and when no spatial
direction is physically preferred. Thus, it refers to physical isotropy when the directions are
related to “geological space”. Indeed, the assumption of process isotropy seems to be the
appropriate generalization of the usual kriging assumption of spatial isotropy to stochastic
tensor fields.

More generally for tensors

P (σ j1
i1 . . . σ

jr
ir Uj1...jr(σx1), . . . , σ j1

i1 . . . σ
jr
ir Uj1...jr(σxn))

= P (Ui1...ir(x1), . . . , Ui1...ir(xn)), σ ∈ O(p), p = q

Isotropy of the process simplifies to the usual isotropy of space for scalar fields represented
by a rank 0 tensor U(x) ∈ IR1.

The assumption of process isotropy leads to a simplification and constraint for the vari-
ogram

σC(σ(x− y))σt = C(x− y)

due to Equation (3)
Analysing this condition in greater detail reveals that if the function C is known for one

direction v = (h 0 . . . 0)t, then it can be calculated for all other directions by virtue of
Equation (). Furthermore, for all σ which leave v fixed it must hold

σCσt = C

Thus, using transformations {σ ∈ O(p) |σv = v}, it holds

C(σ(x− y))ij =


0 , if i 6= j, i, j > 1
c22 , for i = j, i, j > 1
c21 , for i = 1, j > 1 or i > 1, j = 1
c11 , for i = j = 1

Thus C has the structure

C(hv) =



c11(h) c21(h) c21(h) · · · c21(h)
c21(h) c22(h) 0 · · · 0

c21(h) 0
. . .

...
...

...
. . . 0

c21(h) 0 · · · 0 c22(h)

 , h ∈ IR

Eventually, only three functions of distance are required to represent the covariance structure
sufficiently well. Analogous results hold for the variogram.

Isotropy of Space and Measurements

Combining any two of these three types of isotropy assumptions (isotropy of space, isotropy
of measurements, isotropy of the process) leads to independent isotropy of space and mea-
surements

P (τU(σx1), . . . , τU(σxn)) = P (U(x1), . . . ,U(xn)), σ ∈ O(p), τ ∈ O(q) (4)



Figure 3a) The simulated data U(x) ∈ IR3, x ∈ IR2 display an instance of process isotropy
without either isotropy of space nor of measurements. It is hard to detect visually, there does
not seem to exist any preferred direction neither in the data nor in the spatial correlation.
Yet, there seem to be indications that some contiguous directions may be connected to form
smooth curves.



Figure 3b) Results of kriging with unit vector data subject to isotropy of the process; green
arrows represent input data set selected form the simulated data shown in Fig. 3a, blue
arrows represent the true (simulated) directions at test sites, red arrows represent the
estimated directions.



It results in the most extensive simplification, i.e. to ordinary real–valued and isotropic
covariance functions and variograms

γ(‖h‖) = E[‖U(x)−U(x + h)‖2] ∈ IR

Geographical Isotropy of the Process

In most real world applications of geostatistics in the geosciences there is indeed one physically
distinguished direction: The downward direction with respect to the gravity field of the earth
is clearly preferential for many geological processes.

Therefore, it seems reasonable to restrict isotropy assumptions concerning the stochastic
process such that all finite–dimensional marginal probability laws are invariant with respect
to rotations and reflections in the two dimensional geographic space orthogonal the “vertical”
direction defined by gravity

P

((
σ

1

)
U(σx1), . . . ,

(
σ

1

)
U(σxn)

)
= P (U(x1), . . . ,U(xn)), (5)

σ ∈ O(p), p = 2, q = 3

The assumption of geographical isotropy of the process imposes specific constraints on
the variogram

γ(x− y) =

(
σ

1

)
γ(σ(x− y))

(
σt

1

)

Then only variograms in direction v =
(

1
0

)
are required

γ(h) =

(
σ

1

)
γ(‖h‖v)

(
σt

1

)
=

(
σ

1

)
γv(‖h‖)

(
σt

1

)

with σ(x− y) = ‖x− y‖v

σ =
1

‖h‖

(
h1 −h2

h2 h1

)

Unfortunately, geographical isotropy of the process being the most realistic assumption for
most geo–phenomena, it actually does not lead to a great simplification but only to additional
constraints.

Conclusions and Discussion

Any assumption of isotropy leads to different simplifications of the general cross–covariance
function and the kriging procedure. Effectively, isotropy assumptions are used to replace the
ordinary distance of two directional objects in an equivalent way by an appropriately defined
angle.



Figure 4a) The simulated data U(x) ∈ IR3, x ∈ IR2 show full isotropy, i.e. isotropy of space
and measurements. There is no preferred direction.



Figure 4b) Results of kriging with unit vector data subject to full isotropy; green arrows
represent input data set selected form the simulated data shown in Fig. 4a, blue arrows
represent the true (simulated) directions at test sites, red arrows represent the estimated
directions.



Figure 5a) Perspective view of the simulated data U(x) ∈ IR3, x ∈ IR3 exhibit an instance
of geographical process isotropy. The z–direction is clearly preferred, and the correlation in
this direction is more pronounced than in the (x, y)–plane. The data restricted to the (x, y)
do not show any preference, and their spatial correlation does not either.



Figure 5b) Results of kriging with unit vector data subject to geographical isotropy of the
process; green arrows represent input data set selected form the simulated data shown
in Fig. 5a, blue arrows represent the true (simulated) directions at test sites, red arrows
represent the estimated directions.



Viewing the isotropy assumptions from a pragmatic point of view, it can be stated that
different types of isotropy assumptions impose just different constraints on the possible vari-
ograms and on the kriging weights. The constraints on the variogram exactly correspond to
the constraints on the weights, in such a way that they guarantee that the optimal kriging
weights have the specified form. In turn, the constraints on the weights reduce the linear
combinations of the second order properties of the process to those which can be determined
from the constrained variograms.

Thus, if too strong an assumption of isotropy is applied, then the class of linear predictors
from which we want to determine the best predictor becomes too small and only the optimum
within this restricted class can be found. The resulting predictor is typically not as good
as the best one but it is still optimum within a smaller class. If too weak an assumption of
isotropy is applied, then the estimated variogram should still represent the actual isotropy
of the observed process up to a random estimation error of the variogram, i.e. the optimum
kriging weights will be accomplished up to the estimation error in the variogram. Then, the
estimation error of the variogram is the crucial problem of the method.

When the variogram can be estimated in a very stable way, then any isotropy assumptions
are obsolete, as they will enter the analysis by themselves in the way they are present in the
data. If the true isotropy is unknown, and the experimental variogram is supposed to be
only a poor estimate of the true one, then the introduction of any likely isotropy assumption
helps to stabilize the variogram estimation providing still reasonable predictors even when
the process is not of the presumed type of isotropy.

Of course, the best results will be achieved if the correct type of isotropy is known and
applied provided the estimation of the variogram is sufficiently stable.
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