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Abstract
Physical laws are often expressed in terms of partial differential

equations. However these laws completely determine the observable
process only, when sufficiently many boundary conditions are known.
We can use numerical methods like splines or finite elements to inter-
polate such processes.

Kriging is a method to interpolate stationary random processes
based on their estimated second order moments, typically unaware of
the physical law governing the observed spatial process.

For linear partial differential equations both approaches can be
unified. It can be shown that linear differential equations impose
restrictions on the class of admissible variograms and trend models.
Thus the known physical law can help to select a physically reason-
able variogram model. When these restrictions are honored, then the
resulting universal kriging estimates and conditional simulations solve
the differential equation in mean square sense.

As a introductory example the problem of kriging the gravity po-
tential of the earth in free space is considered and it is shown that
none of the commonly used variogram models is admissible. General
methods to construct physically admissible variograms are shown.

1 Introduction

1.1 Motivation

The processes and structures of a landscape and an ore body as investi-
gated by geology are often well understood in a qualitative manner. Most
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phenomena can be related to physical laws. However, our incomplete knowl-
edge about the relevant physical processes, unknown boundary conditions
and superposition of the simple phenomenon by noisy irregularities makes
it impossible to understand the landscape as the unique solution of a sin-
gle differential equation given by the one relevant physical law. Thus we
often have to restrict our modeling of landscape to simple and well inves-
tigated areas or we need to utilize purely statistical techniques like krig-
ing. In kriging the landscape is understood as the result of a random gen-
esis of the land described only by the phenomenological covariance func-
tion. From the theory of stochastic differential equations (e.g. [Gard 1988])
we know that a stochastic differential equation imposes some restrictions
on the covariogram function of the process. Especially the Laplace dif-
ferential equation has often been discussed in the context of kriging (e.g.
[Chilès&Delfiner 1999, Christakos 1992]).

This contribution summarizes some simple and useful results concerning
kriging of processes solving linear partial differential equations. Although
most of them might be obvious and surely well known in some branches
of science, I found it difficult to find explicite statements in the context of
kriging of the simple facts, which this contribution is based on. Thus no
citations does not necessaryly mean that there is none, but that I found non.

1.2 Notations of Kriging

Shortly speaking: Kriging solves the problem to estimate the local value
f(x) at the location x of a location dependent quantity from measurements
f(x1), . . . , f(xn) of this quantity at some other locations x1, . . . ,xn as good
as possible by a linear estimation function:

Estimation for f(x) =
n∑
i=1

λif(x1) (1)

Typical quantities are density, temperature, concentration, potential, eleva-
tion over sea level or local thickness of a deposit. The local values of the
quantity are modeled as a random function. The location can be a three
dimensional position or a geographic location.

We need to know a linear model for the expected value E[f(x)] of the
quantity

E[f(x)] = g0(x) +
m∑
k=1

βkgk(x) (2)

Here the gk(x), k = 0, . . . ,m are some known functions and the βk, k =
1, . . . ,m are unknown real valued parameters. Further we need to know the
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covariance of the values of the quantity at different locations:

c(x,y) = cov(f(x), f(y)) (3)

The function c(x,y) is called a covariogram. The kriging estimation for
f(x) is than given by formula (11). A standard estimation error is provided
for this estimate. For some trend models, where the g1(x) is a constant
the covariogram can be replaced by the variogram γ(x,y) := var(f(x) −
f(y)). The covariogram and the variogram are typically estimated from the
observed values f(x1), . . . , f(xn). Typically it is assumed that c(x,y) only
depends on the vectorial distance x− y of the locations x and y: c(x,y) =
cs(x− y). This assumption is called (second order) stationarity. For a more
detailed introduction to kriging the reader is referred to [Wackernagel 1998,
Chilès&Delfiner 1999, Cressie 1993].

1.3 Differential Equations in Mean Square Sense

1.3.1 Stochastic Differentiation

To consider differential equations of random fields we need the notion of
differentiation in mean square sense (e.g. [Christakos 1992]): A random
function f : IRd → IR is called mean square differentiable in x0 in direction
x when the differential quotient

lim
h→0

f(x0 + hx)− f(x0)

h

has a limit of the mean and the variance for h→ 0 [Chilès&Delfiner 1999]:∣∣∣∣∣limh→0
E

(
f(x0 + hx)− f(x0)

h

)∣∣∣∣∣ <∞ and lim
h→0

var

(
f(x0 + hx)− f(x0)

h

)
<∞

High order derivatives, partial derivatives and gradients are defined analo-
gously to derivatives of deterministic functions. When

∇xf(x) :=
(

∂
∂x1
f(x), . . . , ∂

∂xd
f(x)

)t
exists and has finite variation it can be shown, that[Chilès&Delfiner 1999]

E (∇xf(x)) = ∇xE[f(x)]

cov (∇xf(x), f(y))) = ∇xc(x,y) (4)

cov (∇xf(x),∇yf(y))) = ∇x∇yc(x,y) (5)
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Where c(x,y) = cov(f(x), f(y)) denotes the covariogram of the process
f(x). Note that a function is by definition n times differentiable in mean
square sense, if and only if the derivative dn

dxn
dn

dxn
c(x,y)|x=y of the covari-

ogram exists[Christakos 1992]. From relations seen later this corresponds to
the existence of d2n

dh2n c(h)|h=0 in case of isotropy. This relation is often stated
in literature especially for the first derivative (e.g. [Chilès&Delfiner 1999]).

1.3.2 The General Linear Partial Differential Equation

In this paper we only consider linear partial differential equations of the type:

Lxf(x) :=
n∑
i=0

αj1...jiij (x)
∂i

∂xj1 . . . ∂xji
f(x) = kj(x) (6)

with some tensor valued functions αi : IRd → IRp×
i×︷ ︸︸ ︷

d× . . .× d, k : IRd → IRp,
f : IRd → IR. Summation over equal indices j1, . . . , jn is implied according
to the sum convention for tensors. The location x ∈ IRd can be a location in
space or a location in space and time.

We call an equation homogeneous, if k(x) = 0. We call it stationary when
the αi and k do not depend on x. We call it isotrope when the equation is
invariant under orthogonal transformations of the coordinate system (which
implies stationarity and eveness). We call it even if Lxf(x) = Lxf(−x) for
all even functions f . This is equivalent to αi ≡ 0 for i odd.

The concepts on stationarity and isotropy are closely related to these
concepts in geostatistics. As an example we consider the Laplace equation:

∆xf(x) = (
d2

dx2
1

+
d2

dx2
2

) = 0

in two dimensions, which is homogeneous, stationary, even and isotrope.
We start up from a well known theorem (e.g. [Christakos 1992]):

Theorem 1 (Moments of linear transformed processes) For two ran-
dom functions f(x) and g(y) for which E[f(x)], E[g(x)], cov(f(x), g(y)) ex-
ist and are all finite, and for any differential operator Lx such that LxE[f(x)]
and Lxcov(f(x), g(y)) exist and are finite it holds in mean square sense:

E[Lxf(x)] = LxE[f(x)] (7)

cov(Lxf(x), g(y)) = Lxcov(f(x), g(y)) (8)
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2 Restrictions on the Covariogram

From the theory of stochastic differential equation (e.g. [Gard 1988]) we
know that a linear equation imposes some restrictions on the moments of
the distribution. The implications of these restrictions with respect to the
different typical assumption used with kriging are summarized here.

2.1 Instationary Covariograms

Suppose our process solves Lxf(x) = k(x). Since k(x) does not depend on
the realization of the process f also Lxf(x) does not depend on it and thus
has variance 0.

0 = var(Lxf(x)) = LxLyc(x,y)|x=y

and thus
0 = cov(Lxf(x), f(y)) = Lxc(x,y) for all y

since the covariance with something must be zero when the variance of it is
zero. Further we know Lxf(x) = k(x) and thus

LxE[f(x)] = E[Lxf(x)] = k(x)

and on the other hand with fv(x) := (f(x)− E[f(x)])

Lxfv(x) = 0

Since with E[fv(x)] = 0∀x all its derivatives have zero expectation, too, we
get

LxE[fv(x)] = 0

Moreover since
var(Lxfv(x)) = LxLyc(x,y)|x=y = 0

we have
Lxfv(x) = E[Lxfv(x)] = LxE[fv(x)] = 0

This all leads to the useful corollary, which will be extended to more complex
situations later:

Theorem 2 The following three conditions are equivalent:

1. f(x) solves Lxf(x) = k(x) in mean square sense.

2. The following two conditions hold simultaneously:

• LxE[f(x)] = k(x)
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• LxLyc(x,y)|x=y = 0

3. The following two conditions hold simultaneously:

• LxE[f(x)] = k(x)

• Lxc(x,y) = 0∀y

Remark 1 Simular relations hold for the variogram of f(x):

Lxγ(x,y) = Lx (c(x,x) + c(y,y)− 2c(x,y)) = 0∀y

LxLyγ(x,y)|x=y = 0

2.2 Stationarity

It does generally not make any sense to have a stationary variogram or covar-
iogram and a non stationary differential equation since then we have a sta-
tionary covariogram function solving infinitely many differential equations.
Thus let us consider the case of stationary variogram and stationary differ-
ential equation. We want to rewrite the variogram and covariogram as:

γ(x,y) := γs(x− y), c(x,y) := cs(x− y)

We get

LxLyγ(x,y)|x=y = LxLyγs(y − x)|x=y = Lx(Lhγs)(y − x)|x=y

To get useful results we additionally have to assume that Lx is even since
then we obtain:

Lx(Lhγs)(y − x)|x=y = Lx(Lhγs)(x− y)|x=y = (LhLhγs)(0)

and in the same way we get

LxLyc(x,y)|x=y = (LhLhcs)(0)

Thus we can specialize corollary 2 to

Theorem 3 If Lx is stationary and even the following two conditions are
equivalent with covariogram c(x,y) = cs(x− y):

1. f(x) solves Lxf(x) = k(x) in mean square sense.

2. The following two conditions hold simultaneously:
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• LxE[f(x)] = k(x)

• (LhLhcs)(0) = 0

3. The following two conditions hold simultaneously:

• LxE[f(x)] = k(x)

• (Lhcs)(0) = 0∀h

Thus the differential equation imposes a finite number of conditions on the
derivatives of cs in the origin.

2.2.1 Restrictions on the Stationary Variogram

The variogram is just a affine linear transformation of the covariogram

γ(h) = c(0)− c(h)

All its derivatives are the negative of the corresponding derivatives of c. Thus
when the differential equation does not contain terms containing the zero or-
der derivative, that is it does not depend on f(x) itself, the same restrictions
apply to the variogram as to the covariogram, since the homogeneous linear
differential equation is invariant with respect to the sign of the derivatives.
For details see section 6.

2.3 Isotropy

Imposing the same arguments as for stationarity we should only consider
isotropy of the differential equation and isotropy of the variogram (covari-
ogram) at the same time. We want to rewrite c(x,y) as

c(x,y) = cI(‖x− y‖)

In order to get simple relations on cI(h), h ∈ IR we need a well known
representation theorem for stationary and isotropic differential equations:

Theorem 4 (∆-expansion of isotropic linear pde) If

Lxf(x) :=
n∑
i=0

αj1...jiij (x)
∂i

∂xj1 . . . ∂xji
f(x) = kj(x)

with some tensor valued coefficients α(i)(x) ∈ IRp×
i×︷ ︸︸ ︷

d× . . .× d. is a station-
ary, homogeneous, isotropic, linear partial differential equation of order n,
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then it can be rewritten as:

n/2∑
i=0

β(2i)∆if(x) = k(x), β
(i)
k :=

p∑
j1,...,jn=1

α
(i)
kj1...jn

Where ∆ :=
∑d
i=1

d2

dx2
i

is the Laplace operator.

Without proof. Compare [Müller 1998].
To rewrite the differential equation LxLyc(‖x − y‖)|x=y = 0 in terms of

β we first consider

∆hcI(‖h‖) =
d∑
i=1

d2

dx2
i

cI (‖h‖) =

=
d∑
i=1

d

dxi

(
c′I (‖h‖) xi

‖h‖

)
=

=
d∑
i=1

c′′I (‖h‖) x2
i

‖h‖2
+ c′I (‖h‖)

‖h‖ − x2
i

‖h‖

‖h‖2

 =

= c′′I (‖h‖) + (d− 1)
c′I (‖h‖)
‖h‖

(9)

And thus according to the rule of L’Hospital since c′I(0) = 0 due to isotropy
we get:

∆hcI(‖h‖)|h=0 = dc′′I (0)

From recursive application of formula (9) on the Taylor series of cI(h) we get
explicitly for high order monomials in ∆:

∆i
hcI(‖h‖)|h=0 =

(
d2i

dh2i
cI(h)|h=0

)
i∏

j=1

(
(2j + d− 2)

(2j − 1)

)
(10)

Proof: Note that the Taylor series

cI(‖h‖) =
2n∑
i=0

ai‖h‖i + o(|h‖2n+1)

of c(h) must have only even Taylor coefficients up to order 2n since otherwise
it could not solve the differential equation since cI(‖h‖) would not be 2n times
differentiable in h = 0 and thus c(‖h‖) could not be 2n times differentiable
in h = 0 and thus f(x) could not be n times differentiable in mean square
sense.
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Applying one step of equation (9) would transform this to

∆cI(‖h‖) =
∞∑
i=2

aii(i− 1)︸ ︷︷ ︸
c′′I

+ aii(d− 1)︸ ︷︷ ︸
c′
I
‖h‖

 ‖h‖i−2

Index transformation, recursive application and comparison to the Taylor
series of d2n

dh2n c(h) yields formula (10).
Thus we can specialize corollary 2 further:

Theorem 5 Let c(x,y) = c(‖x − y‖) be the covariogram of an isotropic
random process f(x). Then f(x) solves the equation

n/2∑
i=0

β(2i)∆if(x) = k(x)

in mean square sense if and only if

n/2∑
i=0

β(2i)∆iE[f(x)] = k(x)

and
n∑
i=0

η(2i) d
2i

dh2i
c(h)|h=0 = 0

with

η2i
p =

 i∏
j=1

(2j + d− 2)

(2j − 1)

 i∑
j=0

β(2j)
p β(2i−2j)

p

Summarizingly, any linear isotropic differential equation of degree n induces
linear constraints on the derivatives of c(h) at h = 0 up to degree 2n.

Thus we can detect the qualitative behavior of the variogram near the
origin from the differential equation. This is particularly useful, because the
kriging weights often depend only on the behavior of the variogram near the
origin.

2.4 Example

Let us consider the example of the Laplace differential equation ∆xf(x) = 0
and an isotropic variogram model γ(h). The conditions are:

0 = ∆h∆hγ(‖h‖) =

= ∆2
hc(
√
x2

1 + x2
2)

=
d4

dx4
1

+
d4

dx4
2

+ 2
d2

dx2
1

d2

dx2
1

c(
√
x2

1 + x2
2)
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Using corollary 5 we can rewrite it:

0 =

 2∏
j=1

(2j + d− 2)

(2j − 1)

 γ′′′′(h) =
d(d+ 2)

2
γ′′′′(h)

Thus we just need the fourth derivate of γ in the origin to be zero. This
condition is not met by any of the commonly used Gaussian, exponential
or spherical variograms. Thus we later have to find out how to construct
variograms and covariograms with such properties.

3 Kriging Estimators Solve the Differential

Equation

The implications on the covariogram are interesting for kriging in two ways:

• They help to find the correct kriging weights, since they help to find
an appropriate variogram model.

• They imply that the kriging results solve the differential equations.

3.1 The Kriging Interpolation Solves the Differential
Equation

Theorem 6 The universal kriging interpolation

f̂(x) = g0(x) +



f(x1)− g0(x1)
...

f(xm)− g0(xm)
0
...
0



t

·

·



c(x1,x1) · · · c(x1,xm) g1(x1) · · · gp(x1)
...

. . .
...

... . . .
...

c(xm,x1) · · · c(xm,xm) g1(xm) · · · gp(xm)
g1(x1) . . . g1(xm) 0 · · · 0

...
. . .

...
...

. . .
...

gp(x1) . . . gp(xm) 0 · · · 0



−1

c(x,x1)
...

c(x,xm)
g1(x)

...
gp(x)



(11)

solves the linear partial differential equation

Lxf(x) = k(x)

if the covariogram is admissible for that differential equation

LxLyc(x,y)|x=y = 0,
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the trend function g1, . . . , gp solve the homogeneous equation

Lxgi(x) = 0∀i = 1, . . . , p

and the fixed trend part g0 solves the heterogeneous differential equation

Lxg0(x) = k(x).

Proof: For any fixed realization f(x1), . . . , f(xm) we can write

f̂(x) = g0(x) +
m∑
i=1

qic(x,xm) +
p∑
i=1

rig(x)

since the matrix and the row vector in the formula for f̂(x) do not depend
on x but only on the x1, . . . ,xm and the realization. We get

Lxf̂(x) = Lxg0(x)︸ ︷︷ ︸
k(x)

+
m∑
i=1

qi Lxc(x,xm)︸ ︷︷ ︸
0

+
p∑
i=1

ri Lxg(x)︸ ︷︷ ︸
0

= k(x)

The Lxc(x,xm) = 0 follows from Theorem 2.
In general c(x,y) can be replaced by any generalized covariogram with

respect to the trend functions g(x) without changing the results. Especially,
if g1(x) ≡ 1 solves the homogeneous differential equation the variogram can
be substituted for the covariogram, see the proof in section 6.

3.2 Simulated Realizations

A second important application of kriging is that we can simulate realizations
of the processes conditional on the observed quantities. This is important
in applications, since it helps to understand the variability of possible re-
alizations and to calculate probabilities for specific situations[Cressie 1993].
A simulation is a random function f̃ . The covariance c̃(x,y) of this simu-
lated random function depends on the observed locations. The conditional
simulation based on universal kriging is given as:

f̃(x) = f̂(x) + Z(x)

where Z(x) is a random function with zero mean and covariogram c̃(x,y),
which can be calculated from the covariogram. With abbreviations we get:

c(x) :=


c(x,x1)

...
c(x,xm)
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C :=


c(x1,x1) · · · c(x1,xm)

...
. . .

...
c(xm,x1) · · · c(xm,xm)



g(x) :=


g1(x)

...
gp(x)



G :=


g1(xm) · · · gp(xm)

...
. . .

...
g1(xm) · · · gp(xm)


n(x) :=

(
c(x)
g(x)

)

N :=

(
C G
Gt 0

)

T :=


1 0 · · · 0

. . .
...

. . .
...

1 0 · · · 0


m columns

w(x) := TN−1n(x)

c̃(x,y) =

 1
0

−w(x)


t c(x,x) c(x,y) c(x)t

c(y,x) c(y,y) c(y)t

c(x) c(y) C


 0

1
−w(y)


= c(x,y)−w(x)tc(y)− c(x)tw(y) + w(x)tCw(y)

= c(x,y)− nt(x)N−1Ttc(y)− c(x)tTN−1n(y) +

+nt(x)N−1TtCTN−1n(y)

Every term in this last formula is a linear superposition of functions solving

Lxf(x) = 0

and thus we have
Lxc̃(x,y) = 0 ∀y

Together with Lxf̂(x) = k(x) from theorem 6 we obtain from theorem 2 the
following theorem:

Theorem 7 (Conditional simulations solves pde in mean square sense)
The conditional simulation

f̃(x) = f̂(x) + Z(x)
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where Z(x) is a random process with mean zero and covariogram

c̃(x,y) = c(x,y)−w(x)tc(y)− c(x)tw(y) + w(x)tCw(y)

solves
Lxf̃(x) = k(x)

in mean square sense.

4 Generalization to Tensors

For random fields, which are described by more than one number per location
we need a multivariate extension of theorem 2. The full tensorial version of
theorem 2 is given here. No extra proof is given, since it is just an extension of
theorem 2 to tensorial notation. The tensorial notation implies summation
over indices showing up twice in the same product (Einstein’s summation
convention).

Theorem 8 For f : IRd → IR×
N
k=1pk The following three conditions are equiv-

alent:

1. fi1...in(x) solves Li1...in
xj1...jM

fi1...in(x) = kj1...jM (x) in mean square sense.

2. The following two conditions hold simultaneously:

• Li1...iN
xj1...jM

E[fi1...iN (x)] = kj1...jM (x)

• Li1...iN
xj1...jM

L
i′1...i

′
N

yj′1...j
′
M
ci1...iN i′1...i′N (x,y)|x=y = 0

3. The following two conditions hold simultaneously:

• Li1...iN
xj1...jM

E[fi1...iN (x)] = kj1...jM (x)

• Li1...iN
xj1...jM

ci1...iN i′1...i′N (x,y) = 0∀y

4.1 Simple Example: Heat Flow

A simple physical information about heat flow SQ in the upper continental
crust is that it is (nearly) source free:

∇SQ ≈ 0 (12)

We need to consider sources at the lower heating surface and sinks at the
upper cooling surface. The heat flow in an scenario with equal heat flow
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over the surfaces can be used as trend SQ0 (x. The variogram, which is nec-
essarily instationary in depth direction, could be estimated from computer
simulations of the heat flow through the radom heterogenous ore bodies or
from measured data. This differential equation does not fully describe the
process, even when all boundary conditions are known. However this is not
necessary for the application of kriging. Based on the obtained variogram we
can estimate the heat flow at unmeasured locations by the simple method of
kriging without solving the full nonlinear problem. Although not based on
exact physics the estimation preserves the energy in the system, when the
variogram is admissible for equation 12.

4.2 Special Case: Spatial Phenomena Related by Dif-
ferential Equations

Besides the implication of this theorem for covariograms and kriging of ten-
sors we get a simple application, when differential equations link the spatial
behavior of more than one physical quantity. A simple example is a potential
field with diffuse sources randomly distributed. Denotes φ(x) the potential
and q(x) the intensity field of sources we normally have the Poisson equation:

∆φ = q (13)

The Poisson equation has often been considered for geostatistical applications
(e.g. [Chilès&Delfiner 1999]). Examples are the electric potential φ with
electric loading density q and the gravitation potential φ with mass density q.
Let us think of φ and q as random quantities, we can see this as a differential
equation of the bivariate random field

Z(x) =

(
φ(x)
q(x)

)

(
∆ −1

)( φ(x)
q(x)

)
= 0

From corollary 8 we get for the tensorial covariogram

c(x,y) :=

(
cφφ(x,y) cφq(x,y)
cqφ(x,y) cqq(x,y)

)

the differential equation (
∆x −1

)
c(x,y) = 0∀y
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or equivalently (
∆y −1

) ((
∆x −1

)
c(x,y)

)t
|x=y = 0

And thus a condition on the relation of the covariograms of the two quantities:

∆x∆ycφφ(x,y)− 2∆xcφq(x,y) + cqq(x,y)|x=y = 0

5 Ideas to Construct Physically Admissible

Variograms

An important problem is to construct variograms and covariograms which
solve the equation

LxLyc(x,y)|x=y = 0

I can give four methods, too old to be found in the books I read.

5.1 Construction by Superposition

Conic combinations of variograms and covariograms are itself variograms and
covariograms[Christakos 1992].

c(h) :=
q∑
i=1

wici(h), wi ≥ 0

Theorems 5 and 3 reduce the condition of the differential equation to some
linear conditions on the low order derivatives of c(h) or c(h). They could be
used to construct admissible covariograms or variograms, since the derivatives
of c(h) are linear combinations of the derivatives of the ci(h), by solving the
set of linear equations in wi given by:

q∑
i=1

wi(LhLhci)(0) = 0

with positive coefficients wi

5.2 Construction from known solutions

Suppose we have for every z a w(z,x) that is a solution of

Lxw(z,x) = 0
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which is uniformly square integrable:∫
w(z,x)2dz < a ∈ IR∀x (14)

E.g. when the the equation is stationary and there is a solution w(h) with
finite support we can write:

w(z,x) := w(x− z)

Then
c(x,y) :=

∫
w(z,x)w(z,y)dz

is a positive semidefinite function which is admissible for the differential
equation. c is semidefinite since for any square integrable function f we get∫ ∫

f(x)c(x,y)f(y)dxdy =

=
∫ ∫

f(x)w(z,x)dx
∫
w(z,y)f(y)dydz =

=
∫ (∫

f(x)w(z,x)dx
)2

dz

The integrals can be permuted according to Fubini since all integrals exist
due to eq. (14).

c solves the differential equation since:

Lxc(x,y) = Lx

∫
w(z,x)w(z,y)dz =

=
∫
Lxw(z,x)w(z,y)dz =

=
∫

0w(z,y)dz = 0

The differential and the integration permute according to the theorem of
Fubini, since the inner integrals exist.

5.3 Construction Using Spectral Densities

Every valid stationary covariogram can be written [Cressie 1993]

c(h) =
∫
cos(ωth)dG(ω)

with a spectral measure G on IRd. Its even derivatives are given by
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di

dhi
c(h)|h=0 =

=
∫ di

dhi
cos(ωth)dG(ω)|h=0 =

=
∫
−1i/2

(
⊗ij=1ω

)
cos(ωth)︸ ︷︷ ︸

1

dG(ω)|h=0 =

= −1i/2E
[
⊗ij=1ω

]
dG(ω) =: µ(i)

Thus the even derivatives (cmp. [Christakos 1992, p. 52 remark 4]) are
simply the even non centered moments of the spectral measure, and thus the
differential equation

LhLhc(h)|h=0 = 0

with

LhLh =
2n∑
i=0

βi
di

dhi

is transformed to
2n∑
i=0

β
(i)
pj1...jiµ

(i)
j1...ji = 0∀p

which is a linear condition on the even moments of G.

Remark 2 Since all even fourth order moments are positive definite, no
nontrivial stationary covariogram is admissible for ∆f(x) = 0, which is valid
in source free areas of a potential field. Thus e.g. the Gaussian variogram
or any other stationary stationary variogram is inadmissible for modeling
the gravity potential of the earth in free space. We must use nonstationary
covariogram models.

5.4 Modeling Variograms from Relations

The problem to determine the variogram of the gravity potential of the earth
leads to a different construction (compare [Chilès&Delfiner 1999]). Let us
reconsider the example eq. (13) and use the slightly more general from

Lxφ = q

Possibly we have a (nonstationary) model for the covariogram cqq(x,y) of
q from other investigations such as seismic tomography of the earth. Then
using a Green function g, which is the solution of

Lxg(x) = δx

17



where δx is the delta distribution in x = 0. Then we get as solution a valid
covariogram by double convolution of cqq(x,y) with

(
g(x), δx

)

c(x,y) =
∫

x′

∫
y′

(
g(x)
δx

)
cqq(x

′,y′)
(
g(x) δx

)
dx′dy′

In the situation of the gravity field of the earth the Green function is

g(x) =
g0

‖x‖

where g0 is the general gravity constant.

6 Variograms and Generalized Covariograms

All the theory has been formulated in terms of the covariogram. However in
the application of kriging most often a trend model is used, which implies the
usage of a variogram or a generalized variogram or generalized covariogram in
the context of IRFk[Chilès&Delfiner 1999][Cressie 1993]. In these situations
we have an underlying trend model:

E[f(x)] = f0(x) +
p∑
j=1

βjfj(x) = f0(x) + βt


fj(x)

...
fp(x)


In general it only makes sense to have:

Lxfj = 0, i 6= 0 and Lxf0 = k(x)

since otherwise only a subspace of choices for β would solve the differential
equation.

When we use a trend model of this type the generalized covariogram and
the generalized variogram can be inferred and used only up to equivalence
relation given by[Chilès&Delfiner 1999]:

c(x,y) ≡ c′(x,y) :⇔ c(x,y)− c′(x,y) ∈ 〈{fi(x)fj(y) : i, j = 1, . . . , p}〉

or more precisely for stationary covariograms and stationary trend models:

c(h) ≡ c′(h) :⇔ c(h)− c′(h) ∈
〈{
fi(x)fj(x + h) : i, j = 1, . . . , p,x ∈ IRd

}〉
This is a slight generalization of the theory of intrinsic random functions,
where only the even part of this equivalence relation is used since generalized
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stationary covariograms are always even; i.e. they can be restricted to even
functions. The 〈 〉 brackets denote the linearly generated function space.

When we consider the variogram

2γ(x,y) = c(x,x) + c(y,y)− 2c(x,y)

we realize, that with Lh1 = 0 it solves the differential equation

0 = LyLxγ(x,y) =
1

2
Lx Lyc(x,x)︸ ︷︷ ︸

0,since Ly1 = 0

+
1

2
Ly Lxc(y,y)︸ ︷︷ ︸

0,since Lx1 = 0

−LyLxc(x,y)︸ ︷︷ ︸
0

(15)
if and only if c(h) solves it. And it solves the differential equation

0 = LyLxγ(x,y) =
1

2
Lxc(x,x)︸ ︷︷ ︸

2∗Lxc(x,y)|y=x=0,since Ly1 = 0

+
1

2
Lxc(y,y)︸ ︷︷ ︸

0,since Lx1 = 0

−Lxc(x,y)︸ ︷︷ ︸
0

(16)
Thus if the trend model may contain an unknown mean, due to Lx1 = 0,

then the restrictions on the covariogram equivalently apply to the variogram.
With the same arguments we get the general theorem for generalized

variograms and covariograms:

Theorem 9 If

E[f(x)] = f0(x) +
p∑
j=1

βjfj(x) = f0(x) + βt


fj(x)

...
fp(x)


is a valid trend model for the differential equation

Lxf(x) = k(x)

i.e.
Lxfj = 0, i 6= 0 and Lxf0 = k(x)

Then the consequences of theorems 1, 2, 3, 5, 6, 7, 8 stay unchanged when
we replace the covariogram with a generalized covariogram or generalized var-
iogram.

Proof: It is sufficient to proof theorem 1 for generalized covariograms and
generalized variograms, since all the other theorems follow from it. Thus
we need a modified proof for theorem 1. The definition of a generalized
covariance, as given in [Chilès&Delfiner 1999, p. 253], implies that it yields
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the covariance for any linear operator, which is a finite linear combination of
evaluated measurements

Lxf(x) =
n∑
i=1

αif(xi)

that maps the trend to zero:

Lxfi(x) = 0, i = 1, . . . , p (17)

The linear equations (17) define a linear subspace of all linear operators
called Λx. The special Lx, which is used in the assumptions of theorem 9 is
in Λx by definition. Thus we just need to write Lx as a limit of finite linear
combinations in Λx. This is possible, since the linear combinations are dense
in that subspace, since derivatives are just members in the closing of finite
linear combinations. The same holds for the generalized variogram, since it
is related to the corresponding covariogram by a factor −1, which does not
alter the solution of a linear differential equation.

7 Conclusion

The combination of structural knowledge given by differential equations and
empirical knowledge given by observations can be handled by without any
involved mathematics by kriging based on partial differential equations. The
differential equations essentially impose a restriction on the covariogram or
variogram. Using these admissible variograms or covariograms the kriging
results solve the differential equations. Thus this method combines the ad-
vantage of kriging to use probabilistic information from estimated variograms
with the advantage of numerical methods using the physical knowledge about
the process. Thus kriging provides a simple solution to a big class of prob-
lems.
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