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Abstract

Many applications of kriging demand the introduction of a trend
or external drift. We can use universal kriging, when we know the
variogram of the process. But there are no straight forward meth-
ods known to estimate the variogram unbiasedly or consistently in
the presence of a trend with unknown parameters. Thus the class of
trend surfaces used is often restricted to polynomial trends leading
to the application of intrinsic random functions and generalised co-
variograms. From the theory of intrinsic random functions IRFk we
know that it is impossible to estimate the variogram unbiasedly in
presence of a polynomial trend. It is shown that this problem comes
up only with polynomial and harmonic trend surfaces. Thus polyno-
mial trends are not the best but the worst case to consider. A method
based on the statistical technique of identifiable contrasts for fitting
the non–stationary variogram models is proposed and applications are
presented in example situations. It works unbiasedly and consistently
in the presence of internal and external drift and thus overcomes the
crucial problem that the variogram could not be estimated unbias-
edly in universal Kriging situations. It is shown that the theory of
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generalised covariograms and generalised variograms can be further
generalised to all sorts of trend surfaces and gets more simple rather
than more difficult when we do this.

1 Introduction

The estimation of the variogram is the crucial part of a geostatistical
analysis. Especially in the presence of internal or external trend no uni-
versal techniques to estimate the variogram are known. The simple ap-
proach to remove the trend by some filtering and to estimate the em-
pirical variogram from these filtered data in the usual way leads to a
biased estimate and is therefore blamed in many textbooks about krig-
ing [Cressie 1993][Chilès&Delfiner 1999][Goovaerts 1997][Wackernagel 1998].
A modified procedure leading to unbiased estimates along with some theory
on identifiability of the variogram is given here.

2 Notation

Let Z(s) denote a random field and s1, . . . , sn the locations of our obser-
vations of this random field. As usual for universal kriging we assume that
the random field consists of the additive superposition of a second order sta-
tionary random field Y (x) with mean zero and a deterministic trend βtf(s)
with a known function f : S → IRd, f(s) = (fi(s))i=1,...,d and an unknown
parameter vector β ∈ IRd:

Z(x) = Y (x) + βtf(s)

For simplification in practical applications let us assume f1(s) ≡ 1, i.e. the
trend contains an unknown overall mean. Using this assumption we can de-
velop the whole theory in terms of the more useful variograms instead of
covariograms. Let

c(h) := cov(Y (x), Y (x + h))

γ(h) := var
[
(Y (x)− Y (x + h))2] = c(0)− c(h)

denote covariogram and the variogram of Y (x), respectively. It is very im-
portant to estimate the variogram γ well, since it is instrumental to calculate
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the universal kriging prediction for Z(s) given by

Ẑ(s) =

(
z
Od

)t(
Γ F
Ft

Od×d

)−1(
γ(s)
f(s)

)
with following notations used throughout this contribution:

z = (Z(sk))k=1,...,n ∈ IRn

F = (fi(sk))k=1,...,n, i=1,...,d ∈ IRn×d

Γ = (γ(sk − sl))k=1,...,n, l=1,...,n ∈ IRn×n

C = (c(sk − sl))k=1,...,n, l=1,...,n ∈ IRn×n

Od := (0)i=1,...,d ∈ IRd

Od×d := (0)i=1,...,d, j=1,...,d ∈ IRd×d

γ(s) := (γ(s− sk)k=1,...,n) ∈ IRn

and

y = (Y (sk))k=1,...,n ∈ IRn

3 Discussion in the literature

Various methods have be discussed in the literature to estimate γ or to work
around this problem. One could think of a simple approach: Estimate β,
remove the trend and estimate the variogram from the residuals. However,
we can find warnings that this approach is wrong since it leads to a bi-
ased estimation and largely depends on the method of estimation of β (see
[Cressie 1993],[Chilès&Delfiner 1999], [Goovaerts 1997]). The same warning
is given for a variogram estimated from reestimated residuals based on the
estimated variogram.

The idea to remove the trend, to do ordinary kriging for the residuals
and to add the trend surface afterwards given in [Goovaerts 1997] solves the
problem in so far it only needs the variogram of the residuals, which can be
estimated from the residuals, but curing this problem we get the side-effect
of loosing the crucial assumption of stationarity, since the residuals are in
general not stationary.

For translation invariant trend models, especially for polynomial trend
functions, we can replace the variogram by the generalised covariogram of an
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intrinsic random function [Cressie 1993][Chilès&Delfiner 1999]. These func-
tions can be estimated from the data. The problems of this approach are the
difficult handling of generalised covariograms, which are defined as equiva-
lence classes of functions, and the limitation to special trend surfaces.

Another alternative is to estimate the variogram from pairs uneffected by
the trend [Goovaerts 1997]. Then the limitation is given by the difficulty for
the user of the method to find such pairs.

The general ideas of ML (maximum likelihood) or REML (restricted max-
imum likelihood) can be easily applied to any trend. However we would need
distributional assumptions and can only estimate the parameters of the model
and not empirical variograms.

An alternate approach based on the method of moments is given in this
paper.

4 Comparison of empirical and theoretical

residual variogram

The central idea of this approach is to look at the relationship of the covari-
ance structure of arbitrary residuals and the covariance structure of Y and
Z. With F given in section 2 define:

P = 1− F(FtF)−1Ft

The matrix P satisfies PF = 0, and additionally P2 = P = Pt. It is em-
phasised that all conclusions given in the next section hold for any matrix P
with the property PF = 0. The most important corollary of PF = 0 is :

Pz = P(y + Fβ) = Py

and thus
E[Pz] = PE[y] = P0 = 0 (1)

We can use it to calculate the variance–covariance matrix of Pz

Var(Pz) = PVar(y)Pt = PCPt = −PΓPt (2)

since PΓPt = P(c(0)1In×n −C)Pt = −PCPt due to f1(s) ≡ 1. From eq. (1)
and (2) it follows:

E[PzztPt] = −PΓPt
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Thus it could be a good idea to minimise the squared difference of PzztPt

and −PΓPt to estimate the variogram. It follows from the general principle
of minimum contrast estimators,[Witting 1995].

Let γθ(h), θ ∈ IRp, denote a variogram model, which is pointwise two
times partially differentiable in θ, and let

Γ(θ) = (γθ(sk − sl))k=1,...,n, l=1,...,n ∈ IRn×n

An estimation for the parameter θ is defined in the following way:

θ̂ = argmin
θ
‖PzztPt + PΓ(θ)Pt‖2 with ‖(aij)‖2 :=

∑
ij

a2
ij (3)

Later we will show that this is an estimation with good properties.

5 Derivatives of the objective function

For further considerations we need the derivatives of the objective function
‖PzztPt+PΓ(θ)Pt‖2, which will help to proof the properties of the estimator
and to calculate the estimate θ̂ for θ.

d

dθ
‖PzztPt + PΓ(θ)Pt‖2 =

=
d

dθ
tr
[
(PzztPt + PΓ(θ)Pt)t(PzztPt + PΓ(θ)Pt)

]
=

=
d

dθ
tr
[
PzztPtPzztPt + PzztPtPΓ(θ)Pt + PΓ(θ)PtPzztPt + (PΓ(θ)Pt)2

]
=

[
2tr

((
PΓ(θ)Pt + PzztPt

)
P
dΓ(θ)

dθm
Pt

)]
m=1,...,p

=

[
2tr

((
Γ(θ) + zzt

)
P
dΓ(θ)

dθm
Pt

)]
m=1,...,p

d2

dθ2
‖PzztPt + PΓ(θ)Pt‖2 =

=
d

dθ

[
2tr

((
Γ(θ) + zzt

)
P
dΓ(θ)

dθm
Pt

)]
m=1,...,p

=

[
2tr

((
Γ(θ) + zzt

)
P
d2Γ(θ)

dθmdθl
Pt +

dΓ(θ)

dθl
P
dΓ(θ)

dθm
Pt

)]
m=1,...,p, l=1,...,p

(4)

−Γ can be replaced by any matrix C representing a generalised covariogram.
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6 Variogram models with linear parameteri-

sation

Let us first consider the case of a class of variogram models which is linear
in its parameters:

γ(h) =

p∑
m=1

θmγm(h), θ = (θ1, . . . , θp) ∈ Θ ⊂ (IR+
0 )d (5)

where γ1, . . . γn are conditionally negative definite functions. This is a model
of possible variograms. To simplify the equations we define

Γm = (γm(si − sj))i,j=1,...,n ∈ IRn×n

and get:

d

dθ
‖PzztPt + PΓ(θ)Pt‖2 =

=
(
2tr
((

Γ(θ) + zzt
)
PΓmPt

))
m=1,...,p

d2

dθ2
‖PzztPt −PΓ(θ)Pt‖2 =

=
(
2tr
(
PΓlPΓmPt

))
l=1,...,p,m=1,...,p

=: A

A is regular if and only if:

p∑
m=1

θmPΓmPt 6= 0 ∀θ ∈ IRp \ {0}

We call this an identifiability condition, since the parameter is fully iden-
tifiable from the second order properties of one realisation of Z(s) if and
only if this condition holds. This follows from lemma 1 below. Note that this
condition does not depend on the choice of P.

If this condition holds, then the second derivative is constant and positive
definite since for all θ 6= 0 it holds

θtAθ =

(
p∑

m=1

θmPΓmPt

)2
> 0
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and thus we can obtain the optimum from the linear equation:

θ̂ = −A−1
[
2tr
(
(PzztP)Γm

)]
m=1,...,p

Taking the expectation yields:

E[θ̂] = −A−1 [2tr (−(PΓP)Γm)]m=1,...,p

= A−1

[
2tr

((
p∑
l=1

θlΓl

)
PΓmPt

)]
m=1,...,p

= A−1
[
2tr
(
PΓlPΓmPt

)]
m=1,...,p, l=1,...,p

θ

= A−1Aθ = θ

Thus θ̂ is an unbiased estimator for θ.

7 Consistency of the linear variogram esti-

mator

To determine the variance of a variogram estimator we need assumptions
concerning the moments of fourth order of the process and the measurement
plan. We assume a measurement plan s1, . . . , sn, n = 1, . . . ,∞.

µijkl := cov(Y (si)Y (sj), Y (sl)Y (sm))

For some constant C we assume:

|µijkl| ≤ 1
2
(DikDjl +DilDjk) (6)

where the maximum eigenvalue of the symmetric matrices D = [Dij]i,j is
bounded by a constant C

‖Dv‖
‖v‖

< C ∈ IR (7)

This is true for all random fields reaching independence within a finite range
and regular measurement plans increasing proportional to n. Further we as-
sume: ∥∥∥∥∥

p∑
l=1

θlPClP
t

∥∥∥∥∥
2

≥ 1

c
‖θ‖2n, ∀θ ∈ IRp \ {0} (8)
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i.e. the average amount of new information about the covariogram per new
observation does not fall under some limit. It is a condition on the combina-
tion of trend, measurement plan and variogram model.

To proof the consistency of θ̂ we need a precise understanding of its
structure. Let a : IRn×n → IRn2

,

a((bij)ij) = (b((k−1) mod n)+1,bk/n+1c)k=1,...,n2

denote an embedding of the IRn×n matrix space into the IRn2

vector space.
With:

M := [θla(PClP
t)k]k,l ∈ IRn2×p

we can rewrite θ̂ as:

θ̂ = (MtM)−1Mta(zzt) = M−a(zzt)

where M− denotes the Moore–Penrose–inverse of M. From condition (8) we
conclude that M has full row rank and that the smallest singular value of M
different from 0 is not smaller than

√
n
c
, and thus the largest singular value

of M− is not larger than
√

c
n
.

Let

V := Var(a(zzt)) = (cov(a(zzt)k, a(zzt)l))kl = (µijkl)ij,kl ∈ IRn2×n2

From equation (6) we get1 V ≤L D⊗D and thus

‖Var(θ̂)‖ = ‖M−VM−t‖ ≤
√
c

n
C2

√
c

n
=
cC2

n

Thus we derive weak consistency, and the usual
√
n-convergence rate for θ̂.

8 The empirical variogram corrected for

trend

We could try to use these results to estimate the empirical variogram in the
presence of trend. We just have to specify the variogram model as a step
function of the form

γθ(h) :=

{
0, 0
θk, hk−1 < ‖h‖ ≤ hk

, 0 = h0 < . . . < hp =∞
1”≤L” denotes Loewner matrix half ordering: V ≤L B ⇔ ∀v : vtV v ≤ vtBv and ⊗

denotes the tensor product
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where the hk represent limits of distance classes. When fitting this step func-
tion we could hope to get a corrected empirical variogram using the general
unbiasedness and consistency theorems, but we find the serious problem of
trade off between estimation variance and estimation bias due to the model
misspecification. The model is misspecified because the true variogram is not
a step function and this introduces a bias in the parameter estimation. Thus
we need a general theorem limiting the bias in the estimation of misspecified
models.

Theorem 1 Assume γ(h) to be the true variogram of Y (s) and

γθ(h) =

p∑
m=1

θmγm(h), θ = (θ1, . . . , θp) ∈ W

a misspecified model for γ such that

∃ θ0 ∃ ε :
∑
i,j

(γθ0(xi − xj)− γ(xi − xj))
2 ≤ nε (9)

then
(E[θ̂ − θ0])2 ≤ ε

1
n

inf
‖θ‖=1

‖
∑

k θkPΓkPt‖2
(≤ cε)

The interpretation of this theorem is that only misspecification of the vari-
ogram for large distances can lead to infinite ??? unbounded ??? bias in the
estimation. Misspecification at small distances do not vanish but they are
well bounded if 1

n
inf
‖θ‖=1

‖
∑

k θkPΓkP
t‖2 is large. This term is closely related

to the identifiability condition and we can therefore interpret it as a bound
for the estimation error for ”very” identifiable parameters.
Proof: θ̂ can be written in the form:

θ̂ = M−a(zzt)

E[θ̂ − θ0] = M− (a(Γ)− a(Γ(θ0)))

from equation (9) we get:

‖a(Γ)− a(Γ(θ0))‖2 ≤ nε
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Since inf
‖θ‖=1

‖
∑

k θkPΓkP
t‖ is the smallest singular value of M different from

0,

(
inf
‖θ‖=1

‖
∑

k θkPΓkP
t‖
)−1

is the largest singular value of M− and thus:

‖M− (a(PΓPt)− a(PΓ(θ0)Pt)
)
‖2 ≤ nε

inf
‖θ‖=1

‖
∑

k θkPΓkPt‖2

q.e.d.
Note that even the classical empirical variogram is biased due to mis-

specification of the model, but we can prove that the bias is bounded by 1ε
representing the fact that the expectation of the variogram estimator at a
lag h we can take as a value of any of the lags in the corresponding bin. The
bias with the trend corrected estimation has a more complicated structure,
but it is larger only by the factor:

n

inf
‖θ‖=1

‖
∑

k θkPΓkPt‖2

9 General parameterisation

Most variogram models used in practice are not of the from (5), e.g. the
exponential variogram model:

γ(h) = θ1

(
1− e−θ2‖h‖

)
, θ1, θ2 ≥ 0

Let us now consider the problem of fitting a variogram model not linear in
the parameter θ, using the estimator:

θ̂ = argmin
θ
‖PzztPt + PΓ(θ)Pt‖2 (10)

To guarantee the existence of the (not necessarily unique) global optimum
we restrict the parameters to a closed set. Since the Hessian–matrix of the
objective function:

v(θ) := ‖PzztPt + PΓ(θ)Pt‖2

given in equation (4) is not always positive definite it is not trivial to find
the global optimum, but we can use algorithms of global optimisation. Good
starting values can be found by inspection of the corrected empirical vari-
ogram given in section 8.
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10 Second–order identifiability

The difference of two variograms γ(h) and γ̃(h) is visible in the second order
properties of observations at s1, . . . , sn of one realisation of a random field
Z(s) with random trend, if and only if the identifiability condition:

‖∆(θ, θ0)‖2 6= 0

holds. More precisely this is formulated in the following lemma.

Lemma 1 (Second–order identifiability) For two random fields Y (s)
and Ỹ (s) as in chapter 2 with variograms γ(h) and γ̃(h) there exist two
fields Z(s) = βtf(s) + Y (s) and Z̃(s) = β̃tf(s) + Ỹ (s) with f(s) as in chapter
2 such that C = C̃ if and only if

P(Γ− Γ̃)Pt = 0

Proof:
1) show C = C̃⇒ P(Γ− Γ̃)Pt = 0

P(Γ− Γ̃)Pt = PΓPt −PΓ̃Pt = −PCPt + PC̃Pt = 0

2) show P(Γ− Γ̃)Pt = 0 ⇒ ∃Z, Z̃ such that . . .
Let F− denote the Moore–Penrose–Inverse of F such that: FF−F = F. Set

β := −F−(1−P)y, β̃ := −F−(1−P)ỹ,

z = −FF−(1−P)y + y = −(1−P)y + y = Py

since im(1−P) = im F. Analogously we get z̃ = Pỹ and thus:

E[Z(si)] = 0 = E[Z̃(si)]

and

Var(z) = Var(Py) = −PΓP = −PΓ̃P = Var(Pỹ) = Var(z̃)
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11 Relation to intrinsic random functions

An alternate approach for the estimation of covariograms in the presence
of trend are intrinsic random functions of order k (IRFk) defined e.g. in
[Cressie 1993][Chilès&Delfiner 1999]. The trend used in IRFk exploits a sta-
tionary trend model, i.e. it holds:

∀α ∃ β(h) ∀ s : αtf(s) = β(h)tf(s + h)

Thus for γmk(si, sj) = fm(si)fk(sj) and any configuration of measurement
locations it holds:

im Γmk ⊂ im F

where
Γm = (γm(si, sj))ij = (fm(si)fk(sj))ij

and thus
PΓmPt = 0

Note that for symmetric Γm this is equivalent to:

PΓm = 0

Thus as a consequence of the theory given here, we can estimate γ(h) and
c(h) only up the equivalence class given by the symmetric functions (i.e.
γ(si, sj) = γ(sj, si) in 〈γmk(si, sj) : m, k = 1, . . . , p〉. The same result was
given for the generalised covariances in IRFk–theory, where these symmetric
cross products are the even polynomials up to degree 2n. Note that we have
an implicit extension of the IRFk theory to all stationary trend models (e.g.
harmonic trend functions) from the pure polynomial trend function in the
classical IRFk theory. This paper can only deal with surfaces, which have
a stationary covariogram. Thus for polynomial trend functions the class of
processes described by IRFk is larger than the class of processes discussed in
this paper.

On the other hand we get an interesting result for continuous trend models
which are not translation invariant. Define the translation invariant part If
of the model as:

If :=
⋂

h∈IRd
{αtf(·+ h) : α ∈ IRp}
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Then there exist a measuring plan, such that c(h) and γ(h) are identifiable
only up to differences in

Jf := 〈f1(x)f2(y) + f2(x)f1(y) : f1, f2 ∈ If 〉

More precisely: When two covariance functions c1(h), c(h9 have a difference
in Jf :

(c1 − c2)(h) ∈ Jf
then the corresponding Pz have the same second order properties and we
can not distinguish between these two processes covariance functions from
our observation. However this is not necessary, since both lead to the same
kriging weights and the same kriging errors. Whenever

(c1 − c2)(h) 6∈ Jf

we can make a measurement plan such that we can distinguish between these
two and estimate the variogram.

Thus for the purpose of kriging it is sufficient to find a covariogram which
only differs in by an element of Jf from the true covariogram c.

We now proof that we always choose such a plan of measurement loca-
tions: Let γo(h) = (γ1 − γ2)(h) denote such a modelling direction not in Jf .
Since γo(h) is not in Jf there exists an x such that γm(·+ h) 6∈ {αtf(·) : α ∈
IRp} and thus we get s1 = h, . . . , sn such that the first column of Γo is not in
the image of F and thus PΓo 6= 0. This means that changes of the covariance
by adding any multiple of Γm are identifiable.

When we restrict ourselves to functions with the property γ(x,y) =
γS(x− y) we can rewrite Jf as

JfS =
〈
f1(x)f2(x + h) + f2(x)f1(x + h) : f1, f2 ∈ If ,x ∈ IRd

〉
12 Local trend surfaces

Sometimes we do not believe to know a model for the global trend, but we
want to use a local trend model, which is only valid in a prespecified search-
ing distance of the kriging estimator[Goovaerts 1997]. Since the covariogram
estimator proposed in this paper relies on the global validity of the trend we
have to modify it for considerations of local trend. The general idea of the
estimator is that we filter the trend using a known projection matrix P and
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compare every individual resulting covariance with the covariance calculated
for such a transformed quantity from the covariogram model. This idea can
be generalised. We only need to decide for every pair up to which distance
hmax points should be taken into account for trend filtering. This results in a
projection matrix that we can use to project a subset of the measurements
only and to calculate the covariance of the resulting vectors. The correspond-
ing pair can still be identified since we have only removed the trend estimated
from its local neighbours. Then we can still compare this now locally filtered
covariance with the appropriate theoretical one calculated with the following
modified transformations:

N ij
kl :=

{
δkl , ‖si − sj‖ < hmax ∧ ‖si − sk‖ < hmax ∧ ‖sj − sk‖ < hmax

0 , otherwise

Nij := (N ij
kl)k=1,...,n, l=1,...,n

Pij := 1−NijF(FtNij tNijF)−1FtNij t

θ̂ := argmin
θ

∑
ij

(
etiP

ij(zzt + Γ(θ))Pij tej

)2

13 Conclusion

Even in situations of linear trend models it is possible to calculate empirical
variograms and to fit variogram models consistently and unbiasedly. In the
situation of universal kriging the variogram is fully identifiable up to a linear
space depending on the translation invariant part of the trend. Two func-
tions that cannot be distinguished by the variogram estimation procedure
lead to the same kriging weights and errors. It it is therefore irrelevant which
candidate we choose. This is very similar to what we have with intrinsic ran-
dom functions, but it applies to any internal or external trend model and
not only to very specific internal trend models as with intrinsic random func-
tions. In practical applications we can, but need not, consider the generalised
covariograms, because we can also fit ordinary variogram models to trended
surfaces.

Thus universal kriging based on a universal method of variogram esti-
mation is more flexible and more intuitive than kriging of intrinsic random
functions.

14



References

[Boogaart 1999] Boogaart, K.G. (1999): New possibility for modelling
variograms in complex geology, to appear in Proc. of StatGIS 1999

[Cressie 1993] Cressie, N.A.C. (1993): Statistics for Spatial Data (rev.
ed.): J. Wiley & Sons

[Chilès&Delfiner 1999] Chilès, J.-P., Delfiner, P. (1999): Geostatistics:
Modelling Spatial Uncertainty: Wiley

[Goovaerts 1997] Goovaerts, P (1997): Geostatistics for Natural Resource
Evaluation, Oxford University Press, New York

[Wackernagel 1998] Wackernagel, Hans (1998): Multivariate Geostatis-
tics, An Introduction With Applications, 2nd, completely revised edition,
Springer Verlag, Berlin

[Witting 1995] Witting, H., U. Müller-Funk (1995): Mathematische
Statistik. 2. Asymptotische Statistik: parametrische Modelle und nicht-
parametrische Funktionale, B.G. Teubner, Stuttgart

15


