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Abstract

A new class of distributions for data from crystal orientation measurements is
introduced. This class characterizes its distributions by their low order harmonics
up to arbitrary order, and adds harmonic functions of higher order according to the
assumption of maximum entropy. This yields a strictly positive distribution density
function, which can easily be handled by powerful statistical procedures well known
from other sciences. This framework provides solutions to various tasks: Does the
ODF follow a given distribution model? Are two sample textures similar? What are
the statistical errors of experimental harmonic coefficients? How to simulate from
a sample ODF? It also provides models for regression of textures: The variation of
texture according to the variation of a controlling parameter.
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1 A distributional model for orientations

The ODF is a density of a distribution on the group SO3 of orientations. We

introduce a family of distributions ExpRot[L,
:

G,
.

G; (θτ )τ∈
:.
I (L)

] defined by a degree

L of a series expansion, the crystal symmetry group
:

G, the sample symmetry group
.

G, and a set of real valued parameters θτ , τ ∈
:.

I(L), by its distribution density:

fθ(g)=A(θ) exp

−
L∑

l=1

M(l)∑
µ=1

N(l)∑
ν=0

θµν
l

:.

T
µν
l (g)

=A(θ) exp

−
∑

τ∈
:.
I (L)

θτ

:.

T τ (g)


(Beran 1979) introduced a similar family for the distributions of directions. This



family has some interesting properties:
• These are the distributions of maximum entropy given a series expansion up

to order L.1 The coefficients

Cµν
l = E[

:.

T
µν
l (g)] =

∮
fθ(g)

:.

T
µν
l (g)dg, l = 1, . . . , L

characterize a distribution in ExpRot[L,
:

G,
.

G; (θτ )τ∈
:.
I (L)

] uniquely.

• All distributions in ExpRot[. . .]have strictly positive distribution densities.
• The maximum likelihood estimation factorizes over the empirical harmonic

components Ĉµν
l given later in the text.

• Given the harmonic components of the density up to a given degree L, har-
monic components of higher order will be added such that we get a positive
distribution density which maximizes the entropy of the distribution.

• If the energy Q(g) of a grain with orientation g is given by a function in terms
of low order harmonics:

Q(g) =
L∑

l=1

M(l)∑
µ=1

N(l)∑
ν=0

θ̃µν
l

:.

T
µν
l (g)

and the probability of a specific rotation g is governed by Gibbs dynamics,

then the correct distribution would be: ExpRot[L,
:

G,
.

G; θ̃].

• In the case of no sample symmetry (
.

G = {1}) the model is rotationally
invariant for all L.

• The model ExpRot[L,
:

G,
.

G; ·] is a strict sub-model of the related models

ExpRot[L′,
:

G,
.

G; ·] and ExpRot[L,
:

G,
.

G′; ·], where L < L′ and
.

G ⊂
.

G′.

• The models ExpRot[L,
:

G,
.

G; ·], L ∈ IN, are dense in the space of all continu-

ous distribution on SO3 with the symmetry properties described by
:

G and
.

G,
i.e. we can approximate any distribution arbitrarily well, if we only choose L
large enough.

• For all θµν
l ∈ IR there exists an A(θ) such that ExpRot[. . . ; θ] yields a valid

probability density.
• There is a one to one relation between the parameters θ and the harmonic

components Cµν
l of the density. Cµν

l is the expected value of
:.

T
µν
l (g) under

the parameter θ, and θ̂ = θ is the ML-estimation of the parameter θ under
observed Ĉµν

l = Cµν
l .

• Since this distribution density has no negative parts, it represents a true
distribution. Orientations with this distribution can be simulated.

• The Fisher-matrix-distribution is equal to ExpRot[1, {1} , {1} , θ] .

1Assuming a nonstandard normalisation:
∮ :.

T
µν
l (g)2 = 1



2 Maximum Likelihood Estimation

Because these families are special cases of regular exponential families some pow-
erful statistical tools are available (assuming you have a fast computer). The

maximum likelihood estimator θ̂ of θ is given by the equation:

Eθ̂(
:.

T
µν
l (g)) = Ĉµν

l , where (1)

Ĉµν
l :=

1

n

n∑
i=1

:.

T
µν
l (gi), gi = orientation of grain i

is the sample mean of the harmonic functions. The derivative of the Eθ[
:.

T
µν
l (g)] is

given by:

d(Eθ(
:.

T
µν
l (g)))lµν

dθ
= V arθ

(
(

:.

T
µν
l (g))lµν

)
Eθ(. . .) and V arθ(. . .) can be calculated for every θ by numerical integration:

Q(g) :=
L∑

l=1

M(l)∑
µ=1

N(l)∑
ν=0

θµν
l

:.

T
µν
l (g) (2)

A(θ) :=

(∮
SO3

exp (−Q(g)) dg

)−1

(3)

Eθ(
:.

T ) = A(θ)

∮
SO3

:.

T (g) exp (−Q(g)) dg (4)

V arθ(
:.

T ) = A(θ)

∮
SO3

:.

T (g)
:.

T (g)t exp (−Q(g)) dg − Eθ(
:.

T )Eθ(
:.

T )t (5)

where
:.

T (g) = (
:.

T
µν
l (g))lµν is used as a vector valued function. The maximum

likelihood estimator θ̂ can then be calculated by solving the equation (1) using the
Newton algorithm. The maximized likelihood is given by:

L(Ĉµν
l ; θ̂) = A(θ̂)n exp

−n
L∑

l=1

M(l)∑
µ=1

N(l)∑
ν=0

θ̂µν
l Ĉµν

l

 (6)

The solution is unique, as the continuously differentiable function Eθ[
:.

T ] is strictly
convex. Therefore, Newton’s algorithm will converge to the proper solution. The
estimated asymptotic estimation variances of the estimated coefficients θ and C
are given by:



V̂ ar(θ̂) =
1

n
V arθ̂(

:.

T )−1, V̂ ar(Ĉ) =
1

n
V arθ̂(

:.

T ) (7)

where n is the number of measured crystal grains. Thus our model provides stan-
dard estimation errors for the harmonic coefficients. The maximum likelihood
estimator exists if and only if Ĉ is in the interior of the convex hull of the possible

values for
:.

T .(Johansen 1979) This holds with probability one if more grains are
measured than parameters are in the model.

3 Models and Tests

The model is a full distributional model. Therefore we can test, if the data, which
we have, is compatible with a given distribution model. Further we can ask how
strong the departure from the model is and how exact we can estimate this depar-
ture and we can give confidence regions for models. Only some basic test will be
outlined here.

The general theory of exponential families provides a construction scheme of
a powerful test for the comparison of a model M0 with a supermodel M1 ⊃ M0

(Witting 1995). This test is called likelihood ratio test. For the test problem

H0 : ODF ∈ M0 vs. H1 : ODF ∈ M1

the test statistic

D := 2 ln
L1(Ĉ; θ̂(1))

L0(Ĉ; θ̂(0))
(8)

is asymptotically distributed χ2
d, where d represents the number of parameters

added from model M0 to model M1. θ̂(i) denotes the maximum likelihood estimator
for model Mi, i = 0, 1. Li denotes the likelihood function for model Mi, i = 0, 1.
The test does not reject the hypothesis H0, if the test statistic D is lower than
the 0.95-quantile of the χ2

d-distribution. This test is valid only for a big size of

n (> 30 ∗ |
:.

I(L′)|), because the χ2-approximation is valid only for large n.

3.1 Testing for the necessary degree L
In the most simple case we assume to know that the data stems from a distri-

bution of this type but with high degree L′. Thus we want to test whether the data
is sufficiently well represented by harmonic coefficients up to order L and the addi-

tional information that the data is compatible with the model ExpRot[L,
:

G,
.

G; ·],
against the alternative that we have to use more harmonic coefficients. Thus we
get the test problem:

H0 : ODF ∈ ExpRot[L,
:

G,
.

G; ·] vs. H1 : ODF ∈ ExpRot[L′,
:

G,
.

G; ·], L′ > L

Since the alternative is an exponential superfamily of the hypothesis, we can use
the likelihood ratio test.



3.2 Testing for sample symmetry
Another question could be, whether the data satisfy a specific sample sym-

metry
.

G or only a lower sample symmetry
.

G′ ⊂
.

G. Thus we get the test problem:

H0 : ODF ∈ ExpRot[L,
:

G,
.

G; ·] vs. H1 : ODF ∈ ExpRot[L,
:

G,
.

G
′; ·]

As before the likelihood ratio test can be used, because the hypothesis H0 is a true
sub-model of the alternative H1.

3.3 Testing for specific potential functions
If we presume that in a specific sample the distribution of crystal orienta-

tions is governed by an energy function depending linearly on a single or several
anisotropic physical properties fi(g), which are functions of low order harmon-
ics, we can test for compatibility of the data with this hypothesis against a full

ExpRot[L,
:

G,
.

G; ·] family.

fi(g) =
∑

τ∈I(L)

θ(i)
τ

:.

T τ (g) (9)

The likelihood ratio test is appropriate for the resulting test problem:

H0 : ODF ∈
{

ExpRot[L,
:

G,
.

G; θ] : θ =
∑

i αiθ
(i)

}
vs.

H1 : ODF ∈ ExpRot[L,
:

G,
.

G; ·]

4 Regression for orientations

Up to now we have generally assumed that all observed orientations came from the
same generating distribution. But more relevant are statistics for comparison of
different textures. This can be a two sample experiment, after which we want to
compare the textures under two different treatments. Or in case of multiple sam-
ples it could be interesting how texture depends on a process parameter. Possible
models and tests for both situations are given here derived from a multivariate gen-
eralisation of the theory of generalized linear models with canonical link functions
(MacCullagh & Nelder 1983).

4.1 The full regression model
In the most simple regression situation we deal with one real valued process

parameter x. For each value of x the process will produce a certain texture. The
most simple model for the influence of x on the texture is that x influences the
parameter θ of the ODF linear:

H0 : ODFx = ExpRot[L,
:

G,
.

G; θ0], θ0 ∈ IRI(L) vs.

H1 : ODFx = ExpRot[L,
:

G,
.

G; θ0 + xθx], θ0, θx ∈ IRI(L)



Here ODFx denotes the ODF generated under condition x. Other more sophisti-
cated kinds of influence are possible. As long as the relation is a linear combination
of θ, the joint distribution of all results of the experiments is a regular exponential
family, and therefore the maximum likelihood estimator and the likelihood ratio
test can be used as usual.

4.2 Two sample tests
As a special case of the regression model we can ask the question, whether

two samples are equal or not, and if they are not equal how strong their departure
is. We just have to introduce an artifical regression variable x taking the value
0 for one sample and the value 1 for the other sample. H0 from the regression
model is the hypothesis that both samples are equal, and H1 is the alternative that
both samples are not equal. The estimate of θ1 tells something about the type and
strength of departure.

5 ODF by grains and by volume

The procedures in this paper are concerned with the orientation distribution of
the typical grain. Therefore the estimators in this paper say something about the
ODF of the grains and not about the ODF of the typical bit of volume. Under
the assumption that the texture does not depend on the size of the grain, both
definitions of the ODF are equal and the grain-wise estimators are more precise,
because they are not disturbed by the variation of grain size. If the probability for
a grain to belong to the sample is proportional to its size, we observe a sample of
grains which have the volume ODF as underlying distribution and therefore we can
use the procedures in this paper for the volume ODF. This happens, if we measure
the orientations on a sparse grid, such that we do not hit any grain twice and all
measured grains have independent orientations. If our grid is sufficiently fine to
measure the area of grains, and we want to model the dependence of the texture on
the grain size we have to use spatial models as introduced in ”Spatial Statistics for
individual orientation measurements”. If we presume dependence but do not want
to model it, we should use some modified procedures, which are not given here.
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