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Abstract

Individual orientation measurements do not only provide crystal orientations but
also their spatial locations. This information can be used to analyse and describe
the interaction of the orientated grains. This paper gives an outline of a statistical
framework, in which processes of dependent crystal orientation can be modelled,
simulated, and analysed. This contains a distribution model derived from the the-
ory of Markov random fields and the theory of conditionally specified distributions.
Pitfalls and possibilities of the simpler approach by the method of moments are
discussed briefly.
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1 Motivation

In many cases the orientation of an individual crystal grain is not independent of
the orientation of its neighbours. This dependence actually effects any inference on
these type of data in at least three ways. First, this behaviour violates the implicit
assumption of independence, which is essential for all statistical inference on the
measured data. Thus, adjusted statistical procedures for textures with dependent
grain orientations are required. Secondly, this interdependence is an interesting
phenomenon by itself, which should be incorporated into the representation of the
texture. Thirdly, simulated textures should incorporate this dependence, too.

2 Distributions for spatial orientation processes

A large class of distributions for spatial stochastic processes representing region-



alized crystal orientations can be derived from the theory of Markov random field
(Cressie 1993) and conditionally specified exponential families (Arnold et al. 1991).
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Details on this family are given in the paper ”Statistics for individual orientation
measurements”.

The central idea of the spatial model is that the conditional distribution of the
crystallographic orientation of every grain given the orientation of the neighbouring
grains has this distributional form. In mathematical terms, with M the set of
grains:

P (gi|gj, j ∈ M \ {i}) = ExpRot[L,
:
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.
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For simplification we may assume pairwise interaction only. Then it follows by the
theory of conditionally specified exponential families given in (Arnold et al. 1991)
that the joint distribution density for the crystallographic orientations of all grains
is:
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The parameters αi and βij should be modelled as linear combinations of entities
depending on the grain’s shape and the relative position of the two grains i, j. Then
the entire model is again an exponential family, and we can use methods known
from the theory of exponential families. This could be the maximum likelihood
estimation using a Metropolis like stochastic gradient algorithm proposed by L.
Younes (Guyon 1995 p.221), and the likelihood ratio tests (under some additional
assumptions) for the comparison of two models. Given a specified microstructure
in form of a set of grains and known parameters α, β the texture can be simu-
lated by a Metropolis algorithm (Guyon 1995). The details of estimation, test and
simulation procedures are far beyond the scope of a six page introductory contribu-
tion. Generalisations to more complex dependence structures in various ways are
available using the more general results of (Arnold et al. 1991), and using curved
exponential families (Kass 1989).

Modelling of a simple dependence structure is exemplified by the following
settings:



αiτ = θ(0)
τ ∗ ”size of grain i” ∗ θ(1)

τ (3)

βijτσ = θ(3) ∗ ”size of common boundary of grain i and grain j” ∗ γτσ (4)

with a γ such that:
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representing a texture with preferred orientation (θ(0)) which depends on the grain
size (θ(1)), and is affected by excessive small angle grain boundaries (θ(3)).

Similar to the effect of the grain size other characteristics of the grain could
be incorporated into the model. These could be a Minkowski measure of the shape
or an aspect of the location of the grain in the sample in case of inhomogeneous
material.

3 Canonical statistics

For every exponential family model, there exists a set of associated canonical mini-
mal sufficient statistics, which are unique up to affine linear transformation. These
statistics contain as much information of the result of the experiment as required
for parameter estimation or tests within the model. It is very interesting what
these statistics are in the spatial model proposed here:

As an example we will us the model given by the equations (2),(3), and a
more general model for the interaction term β:

βijτσ = θ(3)
τσ ∗ ”size of common boundary of grain i and grain j” ∗ γτσ (6)
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The canonical statistics associated with the parameters θ
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of low order harmonics weighted with the grain size:
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The canonical statistics associated with the interaction terms θ
(3)
τσ are some weighted

non centered moments:
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Because of a stereological argument for the measurement the volume of the grain
can be replaced by it’s visible area, and the area of the common boundaries can be
replaced by their visible length.

4 Method of moments

4.1 Standard errors for harmonic coefficients
The model-driven approaches mentioned in the beginning of this contribution

yield standard errors for the experimental harmonic coefficients of the ODF. An

alternative approach could be to use the sample variance of the
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l )2 (10)

However, that is not too splendid an idea, because this estimator is heavily biased
and not consistent, if the orientation of grains is correlated. This problem has been
discussed in depth in the context of regionalized random variables and kriging for
univariate measurements cf. (Cressie 1993).

4.2 Simple inference with multiple samples
A simple workaround for this problem is to take multiple samples of equal size

sufficiently far from each other that they can be assumed independent. Then we

can replace the individual observed
:.

T
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of the individual samples. Then we estimate the variance of the sample means.
The overall mean is given by the mean of the sample means.
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Here gij denotes the orientation of the grain j in sample i. The estimated variance
of the overall mean can be calculated from the empirical variance of the sample
means.
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Since these sample means are mean values, they are distributed approximately
normal. Therefore statistical methods assuming multivariate normality such as
cluster analysis, discriminant analysis, and MANOVA apply. The first two may



have interesting applications in geology, where we may want to classify the unknown
process from the observed texture. MANOVA or more general linear models may
have interesting applications in materials sciences where we want to model the
texture depending on the generating process described by a set of independent
variables. Within the context of MANOVA random effects may be used to model
the variation between different specimen, while fixed effects could be applied to
model the influence of process parameters; MANOVA interaction terms may be
used to model the interaction of the effects of process parameters.

Especially the question whether the textures of two objects are equal or not
can be formulated as a test problem in the MANOVA context, since two textures,
compatible with the same model M , are equal if and only if the sample means
of the minimal sufficient statistics of M have the same mean in both objects.
This is a multi-response heteroscedastic MANOVA model for the sample means
of the minimal sufficient statistics of M as dependent variables and with a single
dichotomic variable representing the object as independent variable.

5 Conclusion

Application of spatial statistics to individual orientation measurement data is pos-
sible and offers a broad variety of statistical procedures useful to answer many
different questions about the observed texture of the investigated material. Only
very few of them have been mentioned; many more can be developed in analogy
to statistical procedures known for other localised data. There are many different
tools for many different purposes available – what kind of purposes are we most
interested in?
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