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1 Introduction

The aim of this paper is to offer a classification of outliers in compositional
data sets. An atypical compositional datum can be produced in many ways. In
this paper we consider those generated: (a) due to gross measurement errors in
individual components, (b) because of the presence of a small subpopulation
with a different centre (e.g., corresponding to another contrasted but lowly-
represented facies), or (c) just by chance (individual atypical data with a low
probability, the “pure” outliers). The next sections outline these three types
of outliers, in a more convenient order. An artifical example containing all of
them is used to check our methods (see Figure 1), and their usefulness in real
applications is shown with a data set of rutile geochemistry (see Figure 3).
Eynatten et al. (2005) present details about this real example.
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Fig. 1. A simulated example dataset with 3 types of outliers:“ok”are the nonoutlying
part of the dataset generated with a multivariate normal distribution on the simplex
Mateu-Figueras et al (2003). “WrongC” and “WrongD” represent outliers created
by replacing the measurement of component C or D with random values following
a lognorm distribution. “Atypical” is a second normal population with the same
variance as the main population but with a modified centre. “Single” is a single
point precisely in the centre of the main distribution, unrelated to the rest of the
data. The data is displayed in a ternary plot matrix using the package“compositions”
Boogaart et al. (2006).

2 Detection of outliers

Changing one measured component in a compositional dataset changes all
portions. It is thus not possible to judge outliers on the basis of their indi-
vidual components, because extreme/atypical values in a single component
modify the whole composition. However we can use standard outlier detection
methods (e.g. Rousseeuw and Leroy, 2003, p. 266-270) to detect multivariate
outliers in an isometric representation of the data set. This isometric represen-
tation is provided by the ilr transform, computed as a set of d log-ratios (d+1
is the dimensionality of a composition), and corresponding to the coordinates
with respect to an orthonormal basis of the simplex, a.k.a. ilr basis (Egozcue
et al., 2003; Pawlowksy-Glahn, 2003).
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In other words, to classify the atypical individuals in a compositional data
set, one can use Mahalanobis distances from a robustly-estimated centre and
a robustly-estimated covariance matrix of the ilr-transformed dataset. We used
the fast robust MCD-covariance estimator (Rousseeuw and Driessen, 1999) as
implemented in Rousseeuw et al. (2006). These distances may be compared
to the 0.95-quantile of distribution of the maximum, robustly-estimated, Ma-
halanobis distance, under the hypothesis of multivariate normality in d di-
mensions (Hardin and Rocke, 2005, cf.). Then, all points above this limit are
considered as outliers. If they cannot be afterwards classified as any of the
other two types (as outlined in the next sections), they will be considered of
type (c).

3 Detection of directional outliers

Note that, unlike classical multivariate outliers, a directional outlier caused by
a measurement error in a single component does not correspond to a canoni-
cal direction of the isometric representation. This is so because no canonical
basis exists in the simplex, as no ilr basis is one-to-one related to individual
components. To decide that an atypical value is explained by a wrong value
in a given single component, we check whether it is still an extreme value in
the subcomposition without that component. A value is considered extreme if
its over the 0.95-quantile of the corresponding χ2-distribution used for outlier
detection in Rousseeuw and Leroy (2003, p.267). If the atypical composition
can be explained in this way, it is classified as a single component outlier, or
type (a). Table 1(left) shows which individuals of the simulated data set can
be explained by a wrong measurement in each single component. Obviously,
the components are not always unique, and we select the best-explaining com-
ponent by choosing the one leading to the lowest Mahalanobis distance of
the remaining subcomposition. The result is also reported in table 1(right),
and displayed in Figure 2. Although the method is not infallible, it gives a
straightforward good classification. Its result with the true data set is reported
in Figure 3.

4 Detection of groups

The classification of outliers (Figures 2 and 3) suggests that there might exist
groups in the population of outliers, to be taken as type (b). Our proposed way
to preliminarily look for them is using cluster analysis of the outliers based
on their (robustly-estimated, pairwise) Mahalanobis distances. The obtained
dendrogram is given in Figure 4. The dendrogram is cut at a level showing 6
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Fig. 2. Classification of simulated data set subgroups according to the final compo-
nent considered as cause of outlier. See table 1 and section 3 for further explanations.
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Fig. 3. The outlier classification of section 3 applied to the rutile dataset.

4



ok 00000 00010 00100 00110 ok ? A B C D E

ok 90 0 0 0 0 90 0 0 0 0 0 0

WrongC 0 0 0 1 4 0 0 0 0 5 0 0

WrongD 3 0 1 0 1 3 0 0 0 0 2 0

Atypical 0 10 0 0 0 0 10 0 0 0 0 0

Single 0 1 0 0 0 0 1 0 0 0 0 0

Table 1
Classification of the simulated data set subgroups according to whether they are
explained as single component outliers. The first part of the table shows this as a
bitcode, with 0 or 1 for each part in the composition: 1 says that the subcompostion
without the given component is typical (thus the atypicality is explained by an
outlier in that component). Often multiple components can explain an outlier, e.g.

some of the outlier in component C could also be explained as an outlier in B. The
ouliers with bitcode 00000 cannot be explained by any single component outlier.
The second part of the table reports the component finally considered as cause of
outlier. Type “?” corresponds to those classified as 00000.

subpopulations of outliers from left to right: two subsets characterised by no
single atypical component, a large set of chromium outliers, and three groups
respectively characterised by atypical iron, vanadium and niobium values.

5 Conclusions

A combination of classic robust multivariate statistics, isometric transforma-
tions of compositions, and conceptual models of “typical” classes of outliers
allow a straightforward detection and classification of compositional outliers,
offering a good overview of the studied data set. Such a study should com-
plement any standard exploratory data analysis, as it provides insights on
possible subgroups and erroneous measurements.
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Fig. 4. Dendrogram of a clustering of outliers in the rutile data set using complete
linkage and robustly-estimated Mahalanobis distances.
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